A geometric approach to information-theoretic private information retrieval

被引:42
作者
Woodruff, D [1 ]
Yekhanin, S [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
来源
TWENTIETH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS | 2005年
关键词
D O I
10.1109/CCC.2005.2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A t-private private information retrieval (PIR) scheme allows a user to retrieve the ith bit of an n-bit string x replicated among k servers, while any coalition of up to t servers learns no information about i. We present a new geometric approach to PIR, and obtain (.)A t-private k-server protocol with communication O ( k(2)/t log k n(1)/ [(2k-I)/1t]), removing the ((k)(t)) term of previous schemes. This answers an open question of [14]. (.)A 2-server protocol with 0(n(1/3)) communication, polynomial preprocessing, and online work O(n/log(r) n) for any constant r. This improves the O(n/log(2)n). work of [8]. (.)Smaller communication for instance hiding [3, 14], PIR with a polylogarithmic number of servers, robust PIR [9], and PIR with fixed answer sizes [4]. To illustrate the power of our approach, we also give alternative, geometric proofs of some of the best I-private upper bounds from [7].
引用
收藏
页码:275 / 284
页数:10
相关论文
共 17 条
[1]  
Ambainis A, 1997, LECT NOTES COMPUT SC, V1256, P401
[2]  
BEAVER D, 1990, LECT NOTES COMPUT SC, V415, P37
[3]   Locally random reductions: Improvements and applications [J].
Beaver, D ;
Feigenbaum, J ;
Kilian, J ;
Rogaway, P .
JOURNAL OF CRYPTOLOGY, 1997, 10 (01) :17-36
[4]  
Beigel R., 2003, EL C COMP COMPL ECCC
[5]  
Beimel A, 2002, ANN IEEE SYMP FOUND, P261, DOI 10.1109/SFCS.2002.1181949
[6]  
Beimel A, 2003, LECT NOTES COMPUT SC, V2576, P326
[7]  
Beimel A, 2001, LECT NOTES COMPUT SC, V2076, P912
[8]  
Beimel A, 2000, LECT NOTES COMPUT SC, V1880, P55
[9]  
BEIMEL A, UNPUB GEN CONSTRUCTI
[10]  
CHOR B, 2000, P 32 ACM S THEOR COM, P304