A geometric approach to constrained mechanical systems, symmetries and inverse problems

被引:15
作者
Morando, P
Vignolo, S
机构
[1] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
[2] Univ Genoa, Dipartimento Matemat, I-16146 Genoa, Italy
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1998年 / 31卷 / 40期
关键词
D O I
10.1088/0305-4470/31/40/015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a geometrical framework for the description of constrained mechanical systems, and we analyse different kinds of symmetries and their relationships. We propose a new definition for non-holonomic Lagrangian mechanical systems, and we give a geometrical characterization for the Helmholtz conditions related to the inverse problem.
引用
收藏
页码:8233 / 8245
页数:13
相关论文
共 13 条
[1]   A GEOMETRICAL VERSION OF THE HELMHOLTZ CONDITIONS IN TIME-DEPENDENT LAGRANGIAN DYNAMICS [J].
CRAMPIN, M ;
PRINCE, GE ;
THOMPSON, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (07) :1437-1447
[2]  
DELEON M, 1985, METHODS DIFFERENTIAL
[3]   ON THE INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS FOR A CLASS OF COUPLED DYNAMIC-SYSTEMS [J].
IBORT, LA ;
MARIN SOLANO, J .
INVERSE PROBLEMS, 1991, 7 (05) :713-725
[4]  
Massa E, 1997, ANN I H POINCARE-PHY, V66, P1
[5]  
MASSA E, 1991, ANN I H POINCARE-PHY, V55, P511
[6]  
MASSA E, 1994, ANN I H POINCARE-PHY, V61, P17
[7]   THE SYMMETRY IN THE STRUCTURE OF DYNAMICAL AND ADJOINT SYMMETRIES OF 2ND-ORDER DIFFERENTIAL-EQUATIONS [J].
MORANDO, P ;
PASQUERO, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (07) :1943-1955
[8]  
MORANDO P, 1996, NONLINEAR MATH PHYS, V3, P68
[9]   A GEOMETRICAL FRAMEWORK FOR THE STUDY OF NONHOLONOMIC LAGRANGIAN SYSTEMS [J].
SARLET, W ;
CANTRIJN, F ;
SAUNDERS, DJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (11) :3253-3268
[10]   A differential geometric setting for mixed first- and second-order ordinary differential equations [J].
Sarlet, W ;
Cantrijn, F ;
Saunders, DJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (11) :4031-4052