Scaling and universality in animate and inanimate systems

被引:36
作者
Stanley, HE
Amaral, LAN
Buldyrev, SV
Goldberger, AL
Havlin, S
Leschhorn, H
Maass, P
Makse, HA
Peng, CK
Salinger, MA
Stanley, MHR
Viswanathan, GM
机构
[1] BOSTON UNIV, DEPT PHYS, BOSTON, MA 02215 USA
[2] HARVARD UNIV, BETH ISRAEL HOSP, SCH MED, DIV CARDIOVASC, BOSTON, MA 02215 USA
[3] BAR ILAN UNIV, MINERVA CTR, IL-52100 RAMAT GAN, ISRAEL
[4] BAR ILAN UNIV, DEPT PHYS, IL-52100 RAMAT GAN, ISRAEL
[5] BOSTON UNIV, SCH MANAGEMENT, BOSTON, MA 02215 USA
关键词
D O I
10.1016/0378-4371(96)00086-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We illustrate the general principle that in biophysics, econophysics and possibly even city growth, the conceptual framework provided by scaling and universality may be of use in making sense of complex statistical data. Specifically, we discuss recent work on DNA sequences, heartbeat intervals, avalanche-like lung inflation, urban growth, and company growth. Although our main focus is on data, we also discuss statistical mechanical models.
引用
收藏
页码:20 / 48
页数:29
相关论文
共 88 条