Study of a One-Dimensional Optimal Control Problem with a Purely State-Dependent Cost

被引:1
|
作者
Dmitruk, A. V. [1 ,2 ]
Vdovina, A. K. [2 ]
机构
[1] Russian Acad Sci, Cent Econ & Math Inst, Moscow, Russia
[2] Lomonosov Moscow State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
Optimal control; One-dimensional state; Unimodular integrand; State-dependent cost; Tchyaplygin comparison theorem; Pontryagin maximum principle;
D O I
10.1007/s12591-016-0306-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A one-dimensional optimal control problem with a state-dependent cost and a unimodular integrand is considered. It is shown that, under some standard assumptions, this problem can be solved without using the Pontryagin maximum principle, by simple methods of the classical analysis, basing on the Tchyaplygin comparison theorem. However, in some modifications of the problem, the usage of Pontryagin's maximum principle is preferable. The optimal synthesis for the problem and for its modifications is obtained.
引用
收藏
页码:133 / 151
页数:19
相关论文
共 50 条
  • [1] Study of a One-Dimensional Optimal Control Problem with a Purely State-Dependent Cost
    A. V. Dmitruk
    A. K. Vdovina
    Differential Equations and Dynamical Systems, 2020, 28 : 133 - 151
  • [2] An approximating pseudospectral method with state-dependent coefficient optimization for nonlinear optimal control problem
    Sun, Jianfeng
    Chen, Xuesong
    IET CONTROL THEORY AND APPLICATIONS, 2023, 17 (10) : 1381 - 1396
  • [3] State-dependent indirect hp-pseudospectral method for rigid spacecraft attitude optimal control problem
    Liu, Yuxian
    Li, Yan
    ASIAN JOURNAL OF CONTROL, 2024, 26 (04) : 1906 - 1926
  • [4] Jacobi Fields in Optimal Control: One-dimensional Variations
    Agrachev, Andrei
    Beschastnyi, Ivan
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2020, 26 (04) : 685 - 732
  • [5] Perimeter Control With State-Dependent Delays: Optimal Control Model and Computational Method
    Yuan, Jinlong
    Wu, Changzhi
    Teo, Kok Lay
    Zhao, Shuang
    Meng, Lixia
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 20614 - 20627
  • [6] Jacobi Fields in Optimal Control: One-dimensional Variations
    Andrei Agrachev
    Ivan Beschastnyi
    Journal of Dynamical and Control Systems, 2020, 26 : 685 - 732
  • [7] Optimal Control for State-Dependent Switched Time-Delayed Systems
    Verriest, Erik
    Zhou, Mi
    Abdallah, Chaouki
    IFAC PAPERSONLINE, 2022, 55 (36): : 85 - 90
  • [8] State-dependent indirect pseudospectral method for nonlinear optimal control problems
    Wang, Zhong
    Li, Yan
    ISA TRANSACTIONS, 2021, 108 : 220 - 229
  • [9] Optimal control of nonlinear one-dimensional periodic wave equation with x-dependent coefficients
    Li, Hengyan
    Ji, Shuguan
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (02): : 269 - 280
  • [10] Output controllability and optimal output control of state-dependent switched Boolean control networks
    Chen, Hao
    Sun, Jitao
    AUTOMATICA, 2014, 50 (07) : 1929 - 1934