ABSOLUTE EIGENVALUES-BASED COVARIANCE MATRIX ESTIMATION FOR A SPARSE ARRAY

被引:4
作者
Adhikari, Kaushallya [1 ]
机构
[1] Univ Rhode Isl, Kingston, RI 02881 USA
来源
2021 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP) | 2021年
关键词
Covariance matrix; DOA estimation; positive semi-definite; sparse array; Toeplitz;
D O I
10.1109/SSP49050.2021.9513813
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The ensemble covariance matrix of a wide sense stationary signal spatially sampled by a full linear array is positive semi-definite and Toeplitz. However, the direct augmented covariance matrix of an augmentable sparse array is Toeplitz but not positive semi-definite, resulting in negative eigenvalues that pose inherent challenges in signal direction estimation problems. The positive eigenvalues-based covariance matrix for augmentable sparse arrays is robust but the matrix is unobtainable when all noise eigenvalues of the direct augmented matrix are negative, which is a possible case. To address this problem, we propose a robust covariance matrix for augmentable sparse arrays that leverages both positive and negative noise eigenvalues. The proposed covariance matrix estimate can be used in conjunction with subspace based algorithms such as multiple signal classification or adaptive beamformers such as minimum variance distortionless response beamformer to yield accurate signal direction estimates.
引用
收藏
页码:401 / 405
页数:5
相关论文
共 20 条
[1]   Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays - Part I: Fully augmentable arrays [J].
Abramovich, YI ;
Gray, DA ;
Gorokhov, AY ;
Spencer, NK .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (09) :2458-2471
[2]   Design and Statistical Analysis of Tapered Coprime and Nested Arrays for the Min Processor [J].
Adhikari, Kaushallya ;
Drozdenko, Benjamin .
IEEE ACCESS, 2019, 7 :139601-139615
[3]  
Adhikari K, 2019, PROC NAECON IEEE NAT, P398, DOI 10.1109/NAECON46414.2019.9058169
[4]   Symmetry-Imposed Rectangular Coprime and Nested Arrays for Direction of Arrival Estimation With Multiple Signal Classification [J].
Adhikari, Kaushallya ;
Drozdenko, Benjamin .
IEEE ACCESS, 2019, 7 :153217-153229
[5]   Beamforming with semi-coprime arrays [J].
Adhikari, Kaushallya .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2019, 145 (05) :2841-2850
[6]   Spatial Spectral Estimation with Product Processing of a Pair of Colinear Arrays [J].
Adhikari, Kaushallya ;
Buck, John R. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (09) :2389-2401
[7]   Extending coprime sensor arrays to achieve the peak side lobe height of a full uniform linear array [J].
Adhikari, Kaushallya ;
Buck, John R. ;
Wage, Kathleen E. .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2014, :1-17
[8]  
Adhikari K, 2013, INT CONF ACOUST SPEE, P4183, DOI 10.1109/ICASSP.2013.6638447
[9]   HIGH-RESOLUTION FREQUENCY-WAVENUMBER SPECTRUM ANALYSIS [J].
CAPON, J .
PROCEEDINGS OF THE IEEE, 1969, 57 (08) :1408-&
[10]   Multiplicative and min processing of experimental passive sonar data from thinned arrays [J].
Chavali, Vaibhav ;
Wage, Kathleen E. ;
Buck, John R. .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2018, 144 (06) :3262-3274