Existence of solutions and optimal control for a model of tissue invasion by solid tumours

被引:31
作者
de Araujo, Anderson L. A. [1 ]
de Magalhaes, Paulo M. D. [2 ]
机构
[1] Univ Fed Vicosa, Dept Matemat, Vicosa, MG, Brazil
[2] Univ Fed Ouro Preto, Dept Matemat, Ouro Preto, MG, Brazil
基金
巴西圣保罗研究基金会;
关键词
Fixed point theorem; Optimal control; Tumour invasion of tissue; MATHEMATICAL-MODEL;
D O I
10.1016/j.jmaa.2014.07.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the distributed optimal control problem for the two-dimensional mathematical model of cancer invasion. Existence of optimal state-control and stability is proved and an optimality system is derived. (c) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:842 / 877
页数:36
相关论文
共 25 条
[1]  
Adams R., 1975, SOBOLEV SPACES
[2]   A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion [J].
Anderson, ARA .
MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2005, 22 (02) :163-186
[3]  
[Anonymous], 2010, FUNCTIONAL ANAL
[4]  
[Anonymous], 1998, PARTIAL DIFFERENTIAL
[5]   OPTIMAL CONTROL OF MULTIPLICATIVE CONTROL-SYSTEMS ARISING FROM CANCER-THERAPY [J].
BAHRAMI, K ;
KIM, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1975, 20 (04) :537-542
[6]   A MATHEMATICAL-MODEL OF TUMOR-INDUCED CAPILLARY GROWTH [J].
BALDING, D ;
MCELWAIN, DLS .
JOURNAL OF THEORETICAL BIOLOGY, 1985, 114 (01) :53-73
[7]   Mathematical modeling of tumor-induced angiogenesis [J].
Chaplain, M. A. J. ;
McDougall, S. R. ;
Anderson, A. R. A. .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2006, 8 :233-257
[8]  
CHAPLAIN MAJ, 2003, CANC MODELLING SIMUL
[9]   An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems [J].
Chiu, Chichia ;
Yu, Jui-Ling .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2007, 4 (02) :187-203
[10]  
Corrias B., 2004, MILAN J MATH, V72, P1, DOI DOI 10.1007/s00032-003-0026-x