A realistic, accurate and fast source modeling approach for the EEG forward problem
被引:32
|
作者:
Miinalainen, Tuuli
论文数: 0引用数: 0
h-index: 0
机构:
Tampere Univ Technol, Lab Math, POB 692, FIN-33101 Tampere, Finland
Univ Munster, Inst Biomagnetism & Biosignalanal, Malmedyweg 15, D-48149 Munster, Germany
Univ Munster, Inst Computat & Appl Math, Einsteinstr 62, D-48149 Munster, Germany
Univ Eastern Finland, Dept Appl Phys, POB 1627, FI-70211 Kuopio, FinlandTampere Univ Technol, Lab Math, POB 692, FIN-33101 Tampere, Finland
Miinalainen, Tuuli
[1
,3
,4
,5
]
Rezaei, Atena
论文数: 0引用数: 0
h-index: 0
机构:
Tampere Univ Technol, Lab Math, POB 692, FIN-33101 Tampere, FinlandTampere Univ Technol, Lab Math, POB 692, FIN-33101 Tampere, Finland
Rezaei, Atena
[1
]
Us, Defne
论文数: 0引用数: 0
h-index: 0
机构:
Tampere Univ Technol, Lab Math, POB 692, FIN-33101 Tampere, Finland
Tampere Univ Technol, Lab Signal Proc, POB 553, FIN-33101 Tampere, FinlandTampere Univ Technol, Lab Math, POB 692, FIN-33101 Tampere, Finland
The aim of this paper is to advance electroencephalography (EEG) source analysis using finite element method (FEM) head volume conductor models that go beyond the standard three compartment (skin, skull, brain) approach and take brain tissue inhomogeneity (gray and white matter and cerebrospinal fluid) into account. The new approach should enable accurate EEG forward modeling in the thin human cortical structures and, more specifically, in the especially thin cortices in children brain research or in pathological applications. The source model should thus be focal enough to be usable in the thin cortices, but should on the other side be more realistic than the current standard mathematical point dipole. Furthermore, it should be numerically accurate and computationally fast. We propose to achieve the best balance between these demands with a current preserving (divergence conforming) dipolar source model. We develop and investigate a varying number of current preserving source basis elements n (n = 1, ..., n=5). For validation, we conducted numerical experiments within a multi-layered spherical domain, where an analytical solution exists. We show that the accuracy increases along with the number of basis elements, while focality decreases. The results suggest that the best balance between accuracy and focality in thin cortices is achieved with n = 4 (or in extreme cases even n = 3) basis functions, while in thicker cortices n = 5 is recommended to obtain the highest accuracy. We also compare the current preserving approach to two further FEM source modeling techniques, namely partial integration and St. Venant, and show that the best current preserving source model outperforms the competing methods with regard to overall balance. For all tested approaches, FEM transfer matrices enable high computational speed. We implemented the new EEG forward modeling approaches into the open source duneuro library for forward modeling in bioelectromagnetism to enable its broader use by the brain research community. This library is build upon the DUNE framework for parallel finite elements simulations and integrates with high-level toolboxes like FieldTrip. Additionally, an inversion test has been implemented using the realistic head model to demonstrate and compare the differences between the aforementioned source models.
机构:
Department of Electronics and Telecommunications, Politecnico di Torino, TurinDepartment of Electronics and Telecommunications, Politecnico di Torino, Turin
Rahmouni L.
Merlini A.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Electronics and Telecommunications, Politecnico di Torino, TurinDepartment of Electronics and Telecommunications, Politecnico di Torino, Turin
Merlini A.
Pillain A.
论文数: 0引用数: 0
h-index: 0
机构:
IMT Atlantique, BrestDepartment of Electronics and Telecommunications, Politecnico di Torino, Turin
Pillain A.
Andriulli F.P.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Electronics and Telecommunications, Politecnico di Torino, TurinDepartment of Electronics and Telecommunications, Politecnico di Torino, Turin
Andriulli F.P.
Andriulli, Francesco P. (francesco.andriulli@polito.it),
1600,
Academic Press Inc.
(05):
机构:
Max Planck Inst Human Cognit & Brain Sci, Methods & Dev Grp Brain Networks, Leipzig, GermanyWorcester Polytech Inst, Dept Elect & Comp Engn, Worcester, MA 01609 USA
Maess, Burkhard
Knoesche, Thomas R.
论文数: 0引用数: 0
h-index: 0
机构:
Max Planck Inst Human Cognit & Brain Sci, Methods & Dev Grp Brain Networks, Leipzig, GermanyWorcester Polytech Inst, Dept Elect & Comp Engn, Worcester, MA 01609 USA
Knoesche, Thomas R.
Weise, Konstantin
论文数: 0引用数: 0
h-index: 0
机构:
Max Planck Inst Human Cognit & Brain Sci, Methods & Dev Grp Brain Networks, Leipzig, Germany
Leipzig Univ Appl Sci HTWK, Inst Elect Power Engn, Leipzig, GermanyWorcester Polytech Inst, Dept Elect & Comp Engn, Worcester, MA 01609 USA
Weise, Konstantin
Noetscher, Gregory M.
论文数: 0引用数: 0
h-index: 0
机构:
Worcester Polytech Inst, Dept Elect & Comp Engn, Worcester, MA 01609 USAWorcester Polytech Inst, Dept Elect & Comp Engn, Worcester, MA 01609 USA
Noetscher, Gregory M.
Raij, Tommi
论文数: 0引用数: 0
h-index: 0
机构:
Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA 02129 USAWorcester Polytech Inst, Dept Elect & Comp Engn, Worcester, MA 01609 USA
Raij, Tommi
Makaroff, Sergey N.
论文数: 0引用数: 0
h-index: 0
机构:
Worcester Polytech Inst, Dept Elect & Comp Engn, Worcester, MA 01609 USAWorcester Polytech Inst, Dept Elect & Comp Engn, Worcester, MA 01609 USA
机构:
Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Beijing, Peoples R China
Univ Elect Sci & Technol China, Sch Life Sci & Technol, Chengdu, Peoples R ChinaChinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Beijing, Peoples R China
Zhang, Ting
Liu, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R ChinaChinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Beijing, Peoples R China
Liu, Yan
Cheng, Liantao
论文数: 0引用数: 0
h-index: 0
机构:
Zaozhuang Univ, Sch Optoelect Engn, Zaozhuang, Peoples R ChinaChinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Beijing, Peoples R China
Cheng, Liantao
Ma, Erfang
论文数: 0引用数: 0
h-index: 0
机构:
Xian Jiaotong Liverpool Univ, Dept Appl Math, Suzhou, Peoples R ChinaChinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Beijing, Peoples R China
Ma, Erfang
Zhang, Siqi
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Univ Sci & Technol, Sch Mech & Power Engn, Harbin, Peoples R China
Harbin Univ Sci & Technol, Heilongjiang Prov Key Lab Complex Intelligent Syst, Harbin, Peoples R ChinaChinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Beijing, Peoples R China
Zhang, Siqi
Li, Xiaolin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Beijing, Peoples R ChinaChinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Beijing, Peoples R China
Li, Xiaolin
Yao, Dezhong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Elect Sci & Technol China, Clin Hosp Chengdu Brain Sci Inst, MOE, Key Lab Neuroinformat, Chengdu 610054, Peoples R China
Univ Elect Sci & Technol China, Ctr Informat Biomed, Sch Life Sci & Technol, Chengdu, Peoples R China
Chinese Acad Med Sci, Res Unit Neurosci, Chengdu, Peoples R ChinaChinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Beijing, Peoples R China
Yao, Dezhong
Dai, Yakang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Suzhou 215163, Peoples R China
Suzhou Guoke Med Technol Dev Co Ltd, Suzhou 215163, Peoples R ChinaChinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Beijing, Peoples R China