A test of weak separability for multi-way functional data, with application to brain connectivity studies

被引:20
作者
Lynch, Brian [1 ]
Chen, Kehui [1 ]
机构
[1] Univ Pittsburgh, Dept Stat, 1800 Wesley W Posvar Hall, Pittsburgh, PA 15260 USA
基金
美国国家科学基金会;
关键词
Asymptotics; Functional principal component; Hypothesis testing; Marginal kernel; Separable covariance; Spatio-temporal data; Tensor product; HUMAN CONNECTOME PROJECT; COVARIANCE-MATRIX; DIMENSION; OPERATORS; SPACE;
D O I
10.1093/biomet/asy048
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper concerns the modelling of multi-way functional data where double or multiple indices are involved. We introduce a concept of weak separability. The weakly separable structure supports the use of factorization methods that decompose the signal into its spatial and temporal components. The analysis reveals interesting connections to the usual strongly separable covariance structure, and provides insights into tensor methods for multi-way functional data. We propose a formal test for the weak separability hypothesis, where the asymptotic null distribution of the test statistic is a chi-squared-type mixture. The method is applied to study brain functional connectivity derived from source localized magnetoencephalography signals during motor tasks.
引用
收藏
页码:815 / 831
页数:17
相关论文
共 38 条
[21]   Testing the Diagonality of a Large Covariance Matrix in a Regression Setting [J].
Lan, Wei ;
Luo, Ronghua ;
Tsai, Chih-Ling ;
Wang, Hansheng ;
Yang, Yunhong .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2015, 33 (01) :76-86
[22]   Adding dynamics to the Human Connectome Project with MEG [J].
Larson-Prior, L. J. ;
Oostenveld, R. ;
Della Penna, S. ;
Michalareas, G. ;
Prior, F. ;
Babajani-Feremi, A. ;
Schoffelen, J. -M. ;
Marzetti, L. ;
de Pasquale, F. ;
Di Pompeo, F. ;
Stout, J. ;
Woolrich, M. ;
Luo, Q. ;
Bucholz, R. ;
Fries, P. ;
Pizzella, V. ;
Romani, G. L. ;
Corbetta, M. ;
Snyder, A. Z. .
NEUROIMAGE, 2013, 80 :190-201
[23]  
Ledoit O, 2002, ANN STAT, V30, P1081
[24]   Spectral spatiotemporal imaging of cortical oscillations and interactions in the human brain [J].
Lin, FH ;
Witzel, T ;
Hämäläinen, MS ;
Dale, AM ;
Belliveau, JW ;
Stufflebeam, SM .
NEUROIMAGE, 2004, 23 (02) :582-595
[25]   THE ASYMPTOTIC DISTRIBUTION AND BERRY-ESSEEN BOUND OF A NEW TEST FOR INDEPENDENCE IN HIGH DIMENSION WITH AN APPLICATION TO STOCHASTIC OPTIMIZATION [J].
Liu, Wei-Dong ;
Lin, Zhengyan ;
Shao, Qi-Man .
ANNALS OF APPLIED PROBABILITY, 2008, 18 (06) :2337-2366
[26]  
Lu H., 2006, 18 INT C PATT REC, V2, DOI [10.1109/ICPR.2006.837, DOI 10.1109/ICPR.2006.837]
[27]   The likelihood ratio test for a separable covariance matrix [J].
Lu, N ;
Zimmerman, DL .
STATISTICS & PROBABILITY LETTERS, 2005, 73 (04) :449-457
[28]   A sufficient condition for the CLT in the space of nuclear operators - Application to covariance of random functions [J].
Mas, Andre .
STATISTICS & PROBABILITY LETTERS, 2006, 76 (14) :1503-1509
[29]   FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data [J].
Oostenveld, Robert ;
Fries, Pascal ;
Maris, Eric ;
Schoffelen, Jan-Mathijs .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2011, 2011
[30]   Magnetoencephalography in the study of brain dynamics [J].
Pizzella, Vittorio ;
Marzetti, Laura ;
Della Penna, Stefania ;
de Pasquale, Francesco ;
Zappasodi, Filippo ;
Romani, Gian Luca .
FUNCTIONAL NEUROLOGY, 2014, 29 (04) :241-253