Componentwise error bounds for linear complementarity problems

被引:8
作者
Wang, Zhengyu [1 ,2 ]
Yuan, Ya-Xiang [3 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Univ Karlsruhe, Karlsruhe Inst Technol, Inst Appl & Numer Math, D-76128 Karlsruhe, Germany
[3] Chinese Acad Sci, Acad Math & Syst Sci, Lab Sci & Engn Comp, Inst Computat Math & Sci Engn Comp, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
error bound; linear complementarity problem; convex quadratic programming; P-MATRIX;
D O I
10.1093/imanum/drp026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Componentwise error bounds for linear complementarity problems are presented. For the problem with an H-matrix the error bound can be computed by solving a system of linear equations. It is proved that our error bound is more accurate than that obtained recently by Chen & Xiang (2006, Math. Prog., Ser. A, 106, 513-525). Numerical results show that the new bound is often much better than previous ones.
引用
收藏
页码:348 / 357
页数:10
相关论文
共 11 条
[1]  
Alefeld G., 2004, Reliable Computing, V10, P423, DOI 10.1023/B:REOM.0000047093.79994.8f
[2]   Computation of error bounds for P-matrix linear complementarity problems [J].
Chen, XJ ;
Xiang, SH .
MATHEMATICAL PROGRAMMING, 2006, 106 (03) :513-525
[3]  
Cottle R.W., 1992, The Linear Complementarity Problem
[4]   Engineering and economic applications of complementarity problems [J].
Ferris, MC ;
Pang, JS .
SIAM REVIEW, 1997, 39 (04) :669-713
[5]  
Grant M., 2014, CVX MATLAB SOFTWARE
[6]   NEW IMPROVED ERROR-BOUNDS FOR THE LINEAR COMPLEMENTARITY-PROBLEM [J].
MANGASARIAN, OL ;
REN, J .
MATHEMATICAL PROGRAMMING, 1994, 66 (02) :241-255
[7]   ERROR-BOUNDS FOR THE LINEAR COMPLEMENTARITY-PROBLEM WITH A P-MATRIX [J].
MATHIAS, R ;
PANG, JS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 132 :123-136
[8]  
Neumaier A., 1990, Encyclopedia Math. Appl., V37
[9]  
PANG JS, 1997, MATH PROG, V79, P199
[10]   M-MATRIX CHARACTERIZATIONS .1. NONSINGULAR M-MATRICES [J].
PLEMMONS, RJ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1977, 18 (02) :175-188