A Conservative Finite Volume Scheme Preserving Maximum Principle for Diffusion Equations

被引:3
作者
Yu, Yunlong [1 ]
Yuan, Guangwei [2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing, Peoples R China
[2] Inst Appl Phys & Computat Math, Lab Sci & Technol Computat Phys, Beijing, Peoples R China
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016) | 2017年 / 1863卷
关键词
diffusion scheme; conservation; maximum principle;
D O I
10.1063/1.4992171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop a cell-centered finite volume scheme which preserves the maximum principle for diffusion equations. Two combination are consisted in the construction, i.e., a linear combination of two one-side normal fluxes and a nonlinear combination of two one-side tangential fluxes. It is proved that this nonlinear scheme satisfies discrete maximum principle (DMP). Moreover, the existence of a solution of the nonlinear finite volume scheme is proved without imposing the coercivity assumption on the discrete fluxes. Numerical results are presented to show the conservation, accuracy and positivity of the scheme.
引用
收藏
页数:4
相关论文
共 8 条
[1]   A second-order maximum principle preserving finite volume method for steady convection-diffusion problems [J].
Bertolazzi, E ;
Manzini, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :2172-2199
[2]   CONSTRUCTION AND CONVERGENCE STUDY OF SCHEMES PRESERVING THE ELLIPTIC LOCAL MAXIMUM PRINCIPLE [J].
Droniou, Jerome ;
Le Potier, Christophe .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (02) :459-490
[3]  
La Spina G, 2014, COMPRESSIBLE SINGLE, P282
[4]  
Le Potier C., 2009, INT J FINITE, V6
[5]   Minimal stencil finite volume scheme with the discrete maximum principle [J].
Lipnikov, K. ;
Svyatskiy, D. ;
Vassilevski, Yu. .
RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2012, 27 (04) :369-385
[6]   The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes [J].
Sheng, Zhiqiang ;
Yuan, Guangwei .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (07) :2588-2604
[7]   Enforcing positivity with conservation for nine-point scheme of nonlinear diffusion equations [J].
Yao, Yanzhong ;
Yuan, Guangwei .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 223 :161-172
[8]  
Zeidan D, 2014, INT J COMPUTATIONAL, V25, P299