Toward Accurate Pixelwise Object Tracking via Attention Retrieval

被引:18
作者
Zhang, Zhipeng [1 ,2 ]
Liu, Yufan [1 ,2 ]
Li, Bing [1 ,2 ]
Hu, Weiming [1 ,2 ,3 ]
Peng, Houwen [4 ]
机构
[1] Chinese Acad Sci CASIA, Natl Lab Pattern Recognit NLPR, Inst Automat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci UCAS, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[3] CAS Ctr Excellence Brain Sci & Intelligence Techn, Shanghai 200031, Peoples R China
[4] Microsoft Res Asia, Beijing 100080, Peoples R China
关键词
Target tracking; Image segmentation; Object tracking; Benchmark testing; Clutter; Table lookup; Predictive models; Pixelwise tracking; object tracking and segmentation; attention retrieval;
D O I
10.1109/TIP.2021.3117077
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pixelwise single object tracking is challenging due to the competition of running speeds and segmentation accuracy. Current state-of-the-art real-time approaches seamlessly connect tracking and segmentation by sharing computation of the backbone network, e.g., SiamMask and D3S fork a light branch from the tracking model to predict segmentation mask. Although efficient, directly reusing features from tracking networks may harm the segmentation accuracy, since background clutter in the backbone feature tends to introduce false positives in segmentation. To mitigate this problem, we propose a unified tracking-retrieval-segmentation framework consisting of an attention retrieval network (ARN) and an iterative feedback network (IFN). Instead of segmenting the target inside the bounding box, the proposed framework performs soft spatial constraints on backbone features to obtain an accurate global segmentation map. Concretely, in ARN, a look-up-table (LUT) is first built by sufficiently using the information of the first frame. By retrieving it, a target-aware attention map is generated to suppress the negative influence of background clutter. To ulteriorly refine the contour of the segmentation, IFN iteratively enhances the features at different resolutions by taking the predicted mask as feedback guidance. Our framework sets a new state of the art on the recent pixelwise tracking benchmark VOT2020 and runs at 40 fps. Notably, the proposed model surpasses SiamMask by 11.7/4.2/5.5 points on VOT2020, DAVIS2016, and DAVIS2017, respectively. Code is available at https://github.com/JudasDie/SOTS.
引用
收藏
页码:8553 / 8566
页数:14
相关论文
共 72 条
  • [1] CNN in MRF: Video Object Segmentation via Inference in A CNN-Based Higher-Order Spatio-Temporal MRF
    Bao, Linchao
    Wu, Baoyuan
    Liu, Wei
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5977 - 5986
  • [2] Staple: Complementary Learners for Real-Time Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Golodetz, Stuart
    Miksik, Ondrej
    Torr, Philip H. S.
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1401 - 1409
  • [3] Fully-Convolutional Siamese Networks for Object Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Henriques, Joao F.
    Vedaldi, Andrea
    Torr, Philip H. S.
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 : 850 - 865
  • [4] Learning Discriminative Model Prediction for Tracking
    Bhat, Goutam
    Danelljan, Martin
    Van Gool, Luc
    Timofte, Radu
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6181 - 6190
  • [5] One-Shot Video Object Segmentation
    Caelles, S.
    Maninis, K. -K.
    Pont-Tuset, J.
    Leal-Taixe, L.
    Cremers, D.
    Van Gool, L.
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5320 - 5329
  • [6] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
    Chen, Liang-Chieh
    Zhu, Yukun
    Papandreou, George
    Schroff, Florian
    Adam, Hartwig
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 833 - 851
  • [7] Chen X, 2020, PROC CVPR IEEE, P9381, DOI 10.1109/CVPR42600.2020.00940
  • [8] Blazingly Fast Video Object Segmentation with Pixel-Wise Metric Learning
    Chen, Yuhua
    Pont-Tuset, Jordi
    Montes, Alberto
    Van Gool, Luc
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1189 - 1198
  • [9] Siamese Box Adaptive Network for Visual Tracking
    Chen, Zedu
    Zhong, Bineng
    Li, Guorong
    Zhang, Shengping
    Ji, Rongrong
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6667 - 6676
  • [10] Fast and Accurate Online Video Object Segmentation via Tracking Parts
    Cheng, Jingchun
    Tsai, Yi-Hsuan
    Hung, Wei-Chih
    Wang, Shengjin
    Yang, Ming-Hsuan
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 7415 - 7424