The discontinuous galerkin method for two-dimensional hyperbolic problems. Part I: Superconvergence error analysis

被引:47
作者
Adjerid, Slimane [1 ]
Baccouch, Mahboub [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
discontinuous Galerkin method; hyperbolic problems; superconvergence; triangular meshes;
D O I
10.1007/s10915-007-9144-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the superconvergence properties of the discontinuous Galerkin method applied to scalar first-order hyperbolic partial differential equations on triangular meshes. We show that the discontinuous finite element solution is O(h(p+2)) superconvergent at the Legendre points on the outflow edge for triangles having one outflow edge. For triangles having two outflow edges the finite element error is O(h(p+2)) superconvergent at the end points of the inflow edge. Several numerical simulations are performed to validate the theory. In Part II of this work we explicitly write down a basis for the leading term of the error and construct asymptotically correct a posteriori error estimates by solving local hyperbolic problems with no boundary conditions on more general meshes.
引用
收藏
页码:75 / 113
页数:39
相关论文
共 19 条
[1]   Superconvergence of discontinuous finite element solutions for transient convection-diffusion problems [J].
Adjerid, S ;
Klauser, A .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 22-3 (01) :5-24
[2]   A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems [J].
Adjerid, S ;
Massey, TC .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (51-52) :5877-5897
[3]   A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems [J].
Adjerid, S ;
Devine, KD ;
Flaherty, JE ;
Krivodonova, L .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (11-12) :1097-1112
[4]  
ADJERID S, 2007, UNPUB POSTERIORI ERR
[5]  
ADJERID S, 2007, IN PRESS DISCONTINUO
[6]   Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem [J].
Adjerid, Slimane ;
Massey, Thomas C. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (25-28) :3331-3346
[7]  
Bottcher K., 1996, ADAPTIVE ERROR CONTR
[9]  
Celiker F, 2006, MATH COMPUT, V76, P67
[10]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463