A Heterogeneous Computing System with Memristor-Based Neuromorphic Accelerators

被引:0
|
作者
Liu, Xiaoxiao [1 ]
Mao, Mengjie [1 ]
Li, Hai [1 ]
Chen, Yiran [1 ]
Jiang, Hao [2 ]
Yang, J. Joshua [3 ]
Wu, Qing [4 ]
Barnell, Mark [4 ]
机构
[1] Univ Pittsburgh, Elect & Comp Engn, Pittsburgh, PA 15260 USA
[2] San Francisco State Univ, Sch Engn, San Francisco, CA 94132 USA
[3] Hewlett Packard Labs, Palo Alto, CA USA
[4] Air Force Res Lab, Informat Directorate, Rome, NY USA
来源
2014 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC) | 2014年
关键词
neuromorphic computing; memristor; crossbar array; analog circuit; network-on-chip;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
As technology scales, on-chip heterogeneous architecture emerges as a promising solution to combat the power wall of microprocessors. In this work, we propose a heterogeneous computing system with memristor-based neuromorphic computing accelerators (NCAs). In the proposed system, NCA is designed to speed up the artificial neural network (ANN) executions in many high-performance applications by leveraging the extremely efficient mixed-signal computation capability of nanoscale memristor-based crossbar (MBC) arrays. The hierarchical MBC arrays of the NCA can be flexibly configured to different ANN topologies through the help of an analog Networkon- Chip (A-NoC). A general approach which translates the target codes within a program to the corresponding NCA instructions is also developed to facilitate the utilization of the NCA. Our simulation results show that compared to the baseline general purpose processor, the proposed system can achieve on average 18.2X performance speedup and 20.1X energy reduction over nine representative applications. The computation accuracy degradation is constrained within an acceptable range (e.g., 11%), by considering the limited data precision, realistic device variations and analog signal fluctuations.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Harmonica: A Framework of Heterogeneous Computing Systems With Memristor-Based Neuromorphic Computing Accelerators
    Liu, Xiaoxiao
    Mao, Mengjie
    Liu, Beiye
    Li, Boxun
    Wang, Yu
    Jiang, Hao
    Barnell, Mark
    Wu, Qing
    Yang, Jianhua
    Li, Hai
    Chen, Yiran
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2016, 63 (05) : 617 - 628
  • [2] Thwarting Replication Attack Against Memristor-Based Neuromorphic Computing System
    Yang, Chaofei
    Liu, Beiye
    Li, Hai
    Chen, Yiran
    Barnell, Mark
    Wu, Qing
    Wen, Wujie
    Rajendran, Jeyavijayan
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2020, 39 (10) : 2192 - 2205
  • [3] An Efficient Programming Framework for Memristor-based Neuromorphic Computing
    Li Zhang, Grace
    Li, Bing
    Huang, Xing
    Shen, Chen
    Zhang, Shuhang
    Burcea, Florin
    Graeb, Helmut
    Ho, Tsung-Yi
    Li, Hai
    Schlichtmann, Ulf
    PROCEEDINGS OF THE 2021 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2021), 2021, : 1068 - 1073
  • [4] Reconfigurable Neuromorphic Computing System with Memristor-Based Synapse Design
    Liu, Beiye
    Chen, Yiran
    Wysocki, Bryant
    Huang, Tingwen
    NEURAL PROCESSING LETTERS, 2015, 41 (02) : 159 - 167
  • [5] Reconfigurable Neuromorphic Computing System with Memristor-Based Synapse Design
    Beiye Liu
    Yiran Chen
    Bryant Wysocki
    Tingwen Huang
    Neural Processing Letters, 2015, 41 : 159 - 167
  • [6] Memristor-based Synapses and Neurons for Neuromorphic Computing
    Zheng, Le
    Shin, Sangho
    Kang, Sung-Mo Steve
    2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 1150 - 1153
  • [7] The Circuit Realization of a Neuromorphic Computing System with Memristor-Based Synapse Design
    Liu, Beiye
    Chen, Yiran
    Wysocki, Bryant
    Huang, Tingwen
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT I, 2012, 7663 : 357 - 365
  • [8] Three dimensional memristor-based neuromorphic computing system and its application to cloud robotics
    An, Hongyu
    Li, Jialing
    Li, Ying
    Fu, Xin
    Yi, Yang
    COMPUTERS & ELECTRICAL ENGINEERING, 2017, 63 : 99 - 113
  • [9] A Memristor-Based Silicon Carbide for Artificial Nociceptor and Neuromorphic Computing
    Liu, Lu'an
    Zhao, Jianhui
    Cao, Gang
    Zheng, Shukai
    Yan, Xiaobing
    ADVANCED MATERIALS TECHNOLOGIES, 2021, 6 (12):
  • [10] Memristor-Based Neuromorphic Chips
    Duan, Xuegang
    Cao, Zelin
    Gao, Kaikai
    Yan, Wentao
    Sun, Siyu
    Zhou, Guangdong
    Wu, Zhenhua
    Ren, Fenggang
    Sun, Bai
    ADVANCED MATERIALS, 2024, 36 (14)