Instanton counting and the chiral ring relations in supersymmetric gauge theories

被引:0
作者
Kanno, Hiroaki [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan
来源
NONCOMMUTATIVITY AND SINGULARITIES: PROCEEDINGS OF FRENCH-JAPANESE SYMPOSIA HELD AT IHES IN 2006 | 2009年 / 55卷
关键词
Instanton; supersymmetric gauge theory; GROMOV-WITTEN THEORY; AMPLITUDES; BLOWUP;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute topological one-point functions of the chiral operator Tr phi(k) in the maximally confining phase of U(N) supersymmetric gauge theory. These chiral one-point functions are of particular interest from gauge/string theory correspondence, since they are related to the equivariant Gromov-Witten theory of P-1. By considering the power sums of Jucys-Murphy elements in the class algebra of the symmetric group we can derive a combinatorial identity that leads the relations among chiral one-point functions. Using the operator formalism of free fermions, we also compute the vacuum expectation value of the loop operator < Tr e(it phi)> which gives the generating function of the one-point functions.
引用
收藏
页码:51 / 67
页数:17
相关论文
共 28 条
[1]   Chiral rings and anomalies in supersymmetric gauge theory [J].
Cachazo, F ;
Douglas, MR ;
Seiberg, N ;
Witten, E .
JOURNAL OF HIGH ENERGY PHYSICS, 2002, (12) :1611-1666
[2]  
Eguchi T, 2003, J HIGH ENERGY PHYS
[3]  
Eguchi T, 2004, PHYS LETT B, V585, P163, DOI 10.1016/j.physletb,2004.01.085
[4]   TRIGONOMETRIC STRUCTURE CONSTANTS FOR NEW INFINITE-DIMENSIONAL ALGEBRAS [J].
FAIRLIE, DB ;
FLETCHER, P ;
ZACHOS, CK .
PHYSICS LETTERS B, 1989, 218 (02) :203-206
[5]   Ν=1 superpotentials from multi-instanton calculus -: art. no. 031 [J].
Fucito, F ;
Morales, JF ;
Poghossian, R ;
Tanzini, A .
JOURNAL OF HIGH ENERGY PHYSICS, 2006, (01) :699-724
[6]  
Fujii S, 2008, ADV THEOR MATH PHYS, V12, P1401
[7]  
Gopakumar R., 1999, Adv. Theor. Math. Phys, V3, P1415, DOI [10.4310/ATMP.1999.v3.n5.a5, DOI 10.4310/ATMP.1999.V3.N5.A5]
[8]  
Iqbal A, 2006, ADV THEOR MATH PHYS, V10, P1
[9]  
Iqbal A, 2003, ADV THEOR MATH PHYS, V7, P457
[10]  
Jucys A.-A. A., 1974, Reports on Mathematical Physics, V5, P107, DOI 10.1016/0034-4877(74)90019-6