MACHINE-LEARNING BASED RETRIEVAL OF SOIL MOISTURE AT HIGH SPATIO-TEMPORAL SCALES USING CYGNSS AND SMAP OBSERVATIONS

被引:6
作者
Lei, Fangni [1 ]
Senyurek, Volkan [1 ]
Kurum, Mehmet [1 ]
Gurbuz, Ali [1 ]
Moorhead, Robert [1 ]
Boyd, Dylan [1 ]
机构
[1] Mississippi State Univ, Mississippi State, MS 39762 USA
来源
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2020年
关键词
CYGNSS; soil moisture; machine learning; SMAP;
D O I
10.1109/IGARSS39084.2020.9323106
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High spatio-temporal soil moisture is critical for the understanding of land-atmosphere interactions and affects meteorological, hydrological and agricultural applications. Currently, most satellite-based microwave sensors provide global soil moisture retrievals at similar to 40 km spatial and 2-3 days temporal resolution. Using the forward scattered L-band Global Navigation Satellite System (GNSS) signals, surface soil moisture can be estimated at higher spatial and temporal scales. However, due to the complex land surface characteristics and bistatic nature of GNSS signals, the retrieval algorithms for deriving surface soil moisture from GNSS signals are still under development. In this work, a machine learning (ML) algorithm has been used for estimating soil moisture from Cyclone Global Navigation Satellite System (CYGNSS) measurements. The in-situ data from International Soil Moisture Network and global soil moisture data from Soil Moisture Active Passive (SMAP) have been deployed as the reference data in the ML algorithm. In particular, various remote sensing-based land surface parameters have been included and facilitate a robust soil moisture retrieving process. The proposed approach has achieved an ubRMSD of 0.0523 m(3)/m(3) between the retrieved soil moisture from CYGNSS and in-situ measurements in a 5-fold cross-validation over 129 ground-based soil moisture sites, suggesting a satisfactory performance of the ML-based approach. Moreover, the global median ubRMSD of 0.042 m(3)/m(3) is obtained between SMAP and CYGNSS ML predictions. Surface soil moisture can be retrieved at similar to 9 km spatial and 1-2 days temporal scales through the presented framework.
引用
收藏
页码:4470 / 4473
页数:4
相关论文
共 50 条
[41]   Factors Determining Spatio-Temporal Variations of Soil Moisture Using Microwave Data [J].
Sure, Anudeep ;
Varade, Divyesh ;
Dikshit, Onkar .
2017 INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN COMPUTING AND COMMUNICATION TECHNOLOGIES (ICETCCT), 2017, :50-54
[42]   Applying a machine learning method to obtain long time and spatio-temporal continuous soil moisture over the Tibetan Plateau [J].
Cui, Yaokui ;
Xiong, Wentao ;
Hu, Ling ;
Liu, Ronghua ;
Chen, Xi ;
Geng, Xiaozhuang ;
Lv, Feng ;
Fan, Wenjie ;
Hong, Yang .
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, :6986-6989
[43]   Soil moisture retrieval over agricultural region through machine learning and sentinel 1 observations [J].
Lakra, Deepanshu ;
Pipil, Shobhit ;
Srivastava, Prashant K. ;
Singh, Suraj Kumar ;
Gupta, Manika ;
Prasad, Rajendra .
FRONTIERS IN REMOTE SENSING, 2025, 5
[44]   Spatio-temporal analysis of land use and land cover changes in a wetland ecosystem of Bangladesh using a machine-learning approach [J].
Siddique, Abu Bokkar ;
Rayhan, Eliyas ;
Sobhan, Faisal ;
Das, Nabanita ;
Fazal, Md Azizul ;
Riya, Shashowti Chowdhury ;
Sarker, Subrata .
FRONTIERS IN WATER, 2024, 6
[45]   PREDICTION OF SOIL MOISTURE FROM NEAR-GLOBAL CYGNSS GNSS-REFLECTOMETRY USING A RANDOM FOREST MACHINE LEARNING MODEL [J].
Wilson, M. D. ;
Datta, R. ;
Savarimuthu, S. ;
Moller, D. ;
Ruf, C. .
IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, :4465-4471
[46]   POLARIZATION DECOMPOSITION AND TEMPERATURE BIAS RESOLUTION FOR SMAP PASSIVE SOIL MOISTURE RETRIEVAL USING TIME SERIES BRIGHTNESS TEMPERATURE OBSERVATIONS [J].
Chan, Steven ;
Bindlish, Rajat ;
O'Neill, Peggy ;
Jackson, Thomas ;
Colliander, Andreas ;
Yueh, Simon .
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, :3771-3774
[47]   SPATIO-TEMPORAL ESTIMATION OF SOIL MOISTURE IN A TROPICAL REGION USING A REMOTE SENSING ALGORITHM [J].
Marrufo, Liliana ;
Gonzalez, Fernando ;
Monsivais-Huertero, Alejandro ;
Ramos, Judith .
2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, :3089-3092
[48]   Surface Soil Moisture Inversion and Distribution Based on Spatio-Temporal Fusion of MODIS and Landsat [J].
Wang, Sinan ;
Wang, Wenjun ;
Wu, Yingjie ;
Zhao, Shuixia .
SUSTAINABILITY, 2022, 14 (16)
[49]   Prediction of Landslides Using Machine Learning Techniques Based on Spatio-Temporal Factors and InSAR Data [J].
Lin Y.-T. ;
Yen H.-Y. ;
Chang N.-H. ;
Lin H.-M. ;
Han J.-Y. ;
Yang K.-H. ;
Chen C.-S. ;
Zheng H.-K. ;
Hsu J.-Y. .
Journal of the Chinese Institute of Civil and Hydraulic Engineering, 2021, 33 (02) :93-104
[50]   Predicting Purchase Decisions Based on Spatio-Temporal Functional MRI Features Using Machine Learning [J].
Wang, Yunzhi ;
Chattaraman, Veena ;
Kim, Hyejeong ;
Deshpande, Gopikrishna .
IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, 2015, 7 (03) :248-255