Towards Portable MEMS Oscillators for Sensing Nanoparticles

被引:3
作者
Chellasivalingam, Malar [1 ,2 ]
Zielinski, Arthur T. [3 ,4 ]
Whitney, Thomas S. [1 ]
Boies, Adam M. [1 ]
Seshia, Ashwin A. [1 ,2 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[2] Univ Cambridge, Nanosci Ctr, Cambridge CB3 0FF, England
[3] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[4] Univ Cambridge, Ctr Atmospher Sci, Cambridge CB2 1EZ, England
关键词
MEMS; oscillators; sensors; resonant frequency; nanoparticles; particulate matter; resonators; indoor particles; silver nanoparticles; PARTICLE; AEROSOL; SENSORS; LIMITS; FBAR; GHZ;
D O I
10.3390/s22155485
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper reports on the design, and implementation of piezoelectric-on-silicon MEMS resonators installed within a portable experimental setup for sensing nanoparticles in a laboratory environment. MEMS oscillators with a center frequency of approximately 5.999 MHz are employed for sensing 50 nm size-selected silver nanoparticles generated in the laboratory. The same experimental setup is then assembled to sense indoor particles that are present in the laboratory environment. The challenges associated with particle deposition as a result of assembling the portable experimental setup is highlighted. Furthermore, the MEMS oscillators demonstrate that the total mass of silver nanoparticles deposited onto the MEMS resonator surface using the inertial impaction technique-based experimental setup is approximately 7.993 nanograms. The total indoor particle mass accumulated on the MEMS resonator surface is estimated to be approximately 1.732 nanograms and 26.9 picograms for two different runs. The frequency resolution of the MEMS oscillator is estimated to be approximately 32 ppb and, consequently, the minimum detectable particle mass is approximately 60 femtograms for a 9.2 s integration time.
引用
收藏
页数:23
相关论文
共 75 条
[1]  
Abdolvand R, 2007, ULTRASON, P608
[2]   Thin-Film Piezoelectric-on-Silicon Resonators for High-Frequency Reference Oscillator Applications [J].
Abdolvand, Reza ;
Lavasani, Hossein M. ;
Ho, Gavin K. ;
Ayazi, Farrokh .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2008, 55 (12) :2596-2606
[3]   Modeling Nonlinearities in MEMS Oscillators [J].
Agrawal, Deepak K. ;
Woodhouse, Jim ;
Seshia, Ashwin A. .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2013, 60 (08) :1646-1659
[4]  
Aigner R, 2002, INTERNATIONAL ELECTRON DEVICES 2002 MEETING, TECHNICAL DIGEST, P897, DOI 10.1109/IEDM.2002.1175981
[5]   SENSORS BASED ON PIEZOELECTRIC RESONATORS [J].
BENES, E ;
GROSCHL, M ;
BURGER, W ;
SCHMID, M .
SENSORS AND ACTUATORS A-PHYSICAL, 1995, 48 (01) :1-21
[6]  
Bhugra H., 2018, Piezoelectric MEMS resonators
[7]   MEMS-Enabled miniaturized particulate matter monitor employing 1.6 GHz aluminum nitride thin-film bulk acoustic wave resonator (FBAR) and thermophoretic precipitator [J].
Black, Justin P. ;
Elium, Alex ;
White, Richard M. ;
Apte, Michael G. ;
Gundel, Lara A. ;
Cambie, Rossana .
2007 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1-6, 2007, :476-+
[8]   SURFACE ACOUSTIC-WAVE PIEZOELECTRIC CRYSTAL AEROSOL MASS MICROBALANCE [J].
BOWERS, WD ;
CHUAN, RL .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1989, 60 (07) :1297-1302
[9]   Weighing of biomolecules, single cells and single nanoparticles in fluid [J].
Burg, Thomas P. ;
Godin, Michel ;
Knudsen, Scott M. ;
Shen, Wenjiang ;
Carlson, Greg ;
Foster, John S. ;
Babcock, Ken ;
Manalis, Scott R. .
NATURE, 2007, 446 (7139) :1066-1069
[10]  
Chellasivalingam M, 2021, PHD THESIS, DOI [10.17863/CAM.83791, DOI 10.17863/CAM.83791]