A Novel Denoising Method Based on Machine Learning in Channel Measurements

被引:6
作者
Mi, Hang [1 ]
Ai, Bo [1 ,2 ,3 ]
He, Ruisi [1 ]
Yang, Mi [1 ]
Ma, Zhangfeng [1 ]
Zhong, Zhangdui [1 ]
Wang, Ning [4 ]
机构
[1] Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China
[2] Zhengzhou Univ, Henan Joint Int Res Lab Intelligent Networking &, Zhengzhou 450001, Peoples R China
[3] PengCheng Lab, Shenzhen 518066, Peoples R China
[4] Zhengzhou Univ, Sch Informat Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Noise reduction; Delays; Noise measurement; Labeling; Training; Guidelines; Wireless communication; Channel noise; data denoising; machine learning; neural network; 5G; MODELS;
D O I
10.1109/TVT.2021.3126432
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Machine learning (ML) is playing an increasingly important role in processing large amounts of data generated by communication networks, since it can efficiently solve the problems of non-linearity and unstructured data. Recently, ML has been widely used in the processing of wireless channel data, as the noisy channel in real propagation environment is usually non-linear and unstructured. In this paper, a denoising method based on ML is presented. Two ML algorithms are used to classify and remove noise in channel impulse responses. Then, the results of the traditional noise threshold denoising are compared with ML denoising, and it is found that the denoising classifier using the bidirectional recurrent neural network has the better denoising performance. Finally, some channel parameters such as RMS delay spread are estimated based on measured channel data using different denoising methods. The results are evaluated and compared to explore the impact of denoising method on the extracted channel parameters.
引用
收藏
页码:994 / 999
页数:6
相关论文
共 23 条
[1]   5G Key Technologies for Smart Railways [J].
Ai, By Bo ;
Molisch, Andreas E. ;
Rupp, Markus ;
Zhong, Zhang-Dui .
PROCEEDINGS OF THE IEEE, 2020, 108 (06) :856-893
[2]  
Bottcher A., 2011, 2011 5th European Conference on Antennas and Propagation (EuCAP), P1395
[3]   PROPAGATION CHANNELS OF 5G MILLIMETER-WAVE VEHICLE-TO-VEHICLE COMMUNICATIONS [J].
He, Ruisi ;
Ai, Bo ;
Wang, Gongpu ;
Zhong, Zhangdui ;
Schneider, Christian ;
Dupleich, Diego A. ;
Thoma, Reiner S. ;
Boban, Mate ;
Luo, Jian ;
Zhang, Yunyong .
IEEE VEHICULAR TECHNOLOGY MAGAZINE, 2020, 15 (01) :16-26
[4]   Clustering Enabled Wireless Channel Modeling Using Big Data Algorithms [J].
He, Ruisi ;
Ai, Bo ;
Molisch, Andreas F. ;
Stuber, Gordon L. ;
Li, Qingyong ;
Zhong, Zhangdui ;
Yu, Jian .
IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (05) :177-183
[5]   On the Clustering of Radio Channel Impulse Responses Using Sparsity-Based Methods [J].
He, Ruisi ;
Chen, Wei ;
Ai, Bo ;
Molisch, Andreas F. ;
Wang, Wei ;
Zhong, Zhangdui ;
Yu, Jian ;
Sangodoyin, Seun .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2016, 64 (06) :2465-2474
[6]   Characterization of Quasi-Stationarity Regions for Vehicle-to-Vehicle Radio Channels [J].
He, Ruisi ;
Renaudin, Olivier ;
Kolmonen, Veli-Matti ;
Haneda, Katsuyuki ;
Zhong, Zhangdui ;
Ai, Bo ;
Oestges, Claude .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (05) :2237-2251
[7]  
Hochreiter S., 1997, Neural Computation, V9, P1735, DOI DOI 10.1162/NECO.1997.9.8.1735
[8]   Machine Learning-Enabled LOS/NLOS Identification for MIMO Systems in Dynamic Environments [J].
Huang, Chen ;
Molisch, Andreas F. ;
He, Ruisi ;
Wang, Rui ;
Tang, Pan ;
Ai, Bo ;
Zhong, Zhangdui .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (06) :3643-3657
[9]   Multi-Frequency Multi-Scenario Millimeter Wave MIMO Channel Measurements and Modeling for B5G Wireless Communication Systems [J].
Huang, Jie ;
Wang, Cheng-Xiang ;
Chang, Hengtai ;
Sun, Jian ;
Gao, Xiqi .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (09) :2010-2025
[10]  
I.-R. P. 1407-7, 2019, 1407 INT TEL UN