A late mitotic regulatory network controlling cyclin destruction in Saccharomyces cerevisiae

被引:266
作者
Jaspersen, SL [1 ]
Charles, JF [1 ]
Tinker-Kulberg, RL [1 ]
Morgan, DO [1 ]
机构
[1] Univ Calif San Francisco, Dept Physiol, San Francisco, CA 94143 USA
关键词
D O I
10.1091/mbc.9.10.2803
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Exit from mitosis requires the inactivation of mitotic cyclin-dependent kinase-cyclin complexes, primarily by ubiquitin-dependent cyclin proteolysis. Cyclin destruction is regulated by a ubiquitin ligase known as the anaphase-promoting complex (APC). In the budding yeast Saccharomyces cerevisiae, members of a large class of late mitotic mutants, including cdc15, cdc5, cdc14, dbf2, and tem1, arrest in anaphase with a phenotype similar to that of cells expressing nondegradable forms of mitotic cyclins. We addressed the possibility that the products of these genes are components of a regulatory network that governs cyclin proteolysis. We identified a complex array of genetic interactions among these mutants and found that the growth defect in most of the mutants is suppressed by overexpression of SPO12, YAK1, and SIC1 and is exacerbated by overproduction of the mitotic cyclin Clb2. When arrested in late mitosis, the mutants exhibit a defect in cyclin-specific APC activity that is accompanied by high Clb2 levels and low levels of the anaphase inhibitor Pds1. Mutant cells arrested in G1 contain normal APC activity. We conclude that Cdc15, Cdc5, Cdc14, Dbf2 and Tem1 cooperate in the activation of the APC in late mitosis but are not required for maintenance of that activity in G1.
引用
收藏
页码:2803 / 2817
页数:15
相关论文
共 88 条
[1]   Regulation of B-type cyclin proteolysis by Cdc28-associated kinases in budding yeast [J].
Amon, A .
EMBO JOURNAL, 1997, 16 (10) :2693-2702
[2]   MECHANISMS THAT HELP THE YEAST-CELL CYCLE CLOCK TICK - G2 CYCLINS TRANSCRIPTIONALLY ACTIVATE G2 CYCLINS AND REPRESS G1 CYCLINS [J].
AMON, A ;
TYERS, M ;
FUTCHER, B ;
NASMYTH, K .
CELL, 1993, 74 (06) :993-1007
[3]   CLOSING THE CELL-CYCLE CIRCLE IN YEAST - G2 CYCLIN PROTEOLYSIS INITIATED AT MITOSIS PERSISTS UNTIL THE ACTIVATION OF G1 CYCLINS IN THE NEXT CYCLE [J].
AMON, A ;
IRNIGER, S ;
NASMYTH, K .
CELL, 1994, 77 (07) :1037-1050
[4]   The proteolysis of mitotic cyclins in mammalian cells persists from the end of mitosis until the onset of S phase [J].
Brandeis, M ;
Hunt, T .
EMBO JOURNAL, 1996, 15 (19) :5280-5289
[5]   The Polo-related kinase Cdc5 activates and is destroyed by the mitotic cyclin destruction machinery in S. cerevisiae [J].
Charles, JF ;
Jespersen, SL ;
Tinker-Kulberg, RL ;
Hwang, L ;
Szidon, A ;
Morgan, DO .
CURRENT BIOLOGY, 1998, 8 (09) :497-507
[6]   Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p [J].
CohenFix, O ;
Peters, JM ;
Kirschner, MW ;
Koshland, D .
GENES & DEVELOPMENT, 1996, 10 (24) :3081-3093
[7]   The polo-like kinase Plx1 is required for M phase exit and destruction of mitotic regulators in Xenopus egg extracts [J].
Descombes, P ;
Nigg, EA .
EMBO JOURNAL, 1998, 17 (05) :1328-1335
[8]   P40(SDB25), A PUTATIVE CDK INHIBITOR, HAS A ROLE IN THE M/G(1) TRANSITION IN SACCHAROMYCES-CEREVISIAE [J].
DONOVAN, JD ;
TOYN, JH ;
JOHNSON, AL ;
JOHNSTON, LH .
GENES & DEVELOPMENT, 1994, 8 (14) :1640-1653
[9]   TRIGGERING OF CYCLIN DEGRADATION IN INTERPHASE EXTRACTS OF AMPHIBIAN EGGS BY CDC2 KINASE [J].
FELIX, MA ;
LABBE, JC ;
DOREE, M ;
HUNT, T ;
KARSENTI, E .
NATURE, 1990, 346 (6282) :379-382
[10]   Cut2 proteolysis required for sister-chromatid separation in fission yeast [J].
Funabiki, H ;
Yamano, H ;
Kumada, K ;
Nagao, K ;
Hunt, T ;
Yanagida, M .
NATURE, 1996, 381 (6581) :438-441