Non-splitting in Kirchberg's Ideal-related KK-Theory

被引:4
作者
Eilers, Soren [1 ]
Restorff, Gunnar
Ruiz, Efren [2 ]
机构
[1] Univ Copenhagen, Dept Math Sci, Copenhagen, Denmark
[2] Univ Hawaii, Dept Math, Hilo, HI 96720 USA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2011年 / 54卷 / 01期
关键词
KK-theory; UCT; C-ASTERISK-ALGEBRAS; ONE NONTRIVIAL IDEAL; KASPAROV GROUPS; RORDAMS CLASSIFICATION; FUNCTOR; UCT;
D O I
10.4153/CMB-2010-083-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A. Bonkat obtained a universal coefficient theorem in the setting of Kirchberg's ideal-related KK-theory in the fundamental case of a C*-algebra with one specified ideal. The universal coefficient sequence was shown to split, unnaturally, under certain conditions. Employing certain K-theoretical information derivable from the given operator algebras using a method introduced here, we shall demonstrate that Bonkat's UCT does not split in general. Related methods lead to information on the complexity of the K-theory which must be used to classify *-isomorphisms for purely infinite C*-algebras with one non-trivial ideal.
引用
收藏
页码:68 / 81
页数:14
相关论文
共 19 条
[1]  
BONKAT A, 2002, THESIS WESTFALISCHE
[3]   Compressing coefficients while preserving ideals in K-theory for C*-algebras [J].
Dadarlat, M ;
Eilers, S .
K-THEORY, 1998, 14 (03) :281-304
[4]   A universal multicoefficient theorem for the Kasparov groups [J].
Dadarlat, M ;
Loring, TA .
DUKE MATHEMATICAL JOURNAL, 1996, 84 (02) :355-377
[5]  
Eilers S, 1998, J REINE ANGEW MATH, V499, P101
[6]   On Rordam's classification of certain C*-algebras with one non-trivial ideal [J].
Eilers, Soren ;
Restorff, Gunnar .
OPERATOR ALGEBRAS, 2006, 1 :87-+
[7]   A CHARACTERIZATION OF KK-THEORY [J].
HIGSON, N .
PACIFIC JOURNAL OF MATHEMATICS, 1987, 126 (02) :253-276
[8]   THE OPERATOR K-FUNCTOR AND EXTENSIONS OF C-STAR-ALGEBRAS [J].
KASPAROV, GG .
MATHEMATICS OF THE USSR-IZVESTIYA, 1981, 16 (03) :513-572
[9]  
Kirchberg E, 2000, J REINE ANGEW MATH, V525, P17
[10]  
Kirchberg E, 2000, C(STAR)-ALGEBRAS, P92