Complete minimal discs in Hadamard manifolds

被引:2
作者
Ripoll, Jaime [1 ]
Tomi, Friedrich [2 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Matemat, Av Bento Goncalves 9500, BR-91540000 Porto Alegre, RS, Brazil
[2] Heidelberg Univ, Math Inst, Neuhenheimer Feld 288, D-69120 Heidelberg, Germany
关键词
Minimal discs; Hadamard manifolds; asymptotic boundary; ASYMPTOTIC DIRICHLET PROBLEMS; HYPERBOLIC SPACE; REGULARITY; CURVATURE;
D O I
10.1515/acv-2015-0044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the classical approach we show the existence of disc type solutions to the asymptotic Plateau problem in certain Hadamard manifolds which may have arbitrarily strong curvature and volume growth.
引用
收藏
页码:315 / 330
页数:16
相关论文
共 23 条
[11]  
Dierkes U, 2010, GRUNDLEHR MATH WISS, V339, pXI, DOI 10.1007/978-3-642-11698-8
[12]   VISIBILITY MANIFOLDS [J].
EBERLEIN, P ;
ONEILL, B .
PACIFIC JOURNAL OF MATHEMATICS, 1973, 46 (01) :45-109
[13]  
Federer Herbert, 1969, GEOMETRIC MEASURE TH
[14]   Hypersurfaces of constant mean curvature in hyperbolic space with prescribed asymptotic boundary at infinity [J].
Guan, B ;
Spruck, J .
AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (05) :1039-1060
[15]   REGULARITY OF MINIMIZING SURFACES OF PRESCRIBED MEAN CURVATURE [J].
GULLIVER, RD .
ANNALS OF MATHEMATICS, 1973, 97 (02) :275-305
[16]   UNIQUENESS AND STABILITY OF HARMONIC MAPS AND THEIR JACOBI FIELDS [J].
JAGER, W ;
KAUL, H .
MANUSCRIPTA MATHEMATICA, 1979, 28 (1-3) :269-291
[17]   ON THE DIRICHLET PROBLEM FOR MINIMAL GRAPHS IN HYPERBOLIC SPACE [J].
LIN, FH .
INVENTIONES MATHEMATICAE, 1989, 96 (03) :593-612
[18]   THE CLASSICAL PLATEAU-PROBLEM AND THE TOPOLOGY OF 3-DIMENSIONAL MANIFOLDS - THE EMBEDDING OF THE SOLUTION GIVEN BY DOUGLAS-MORREY AND AN ANALYTIC PROOF OF DEHN LEMMA [J].
MEEKS, WH ;
YAU, ST .
TOPOLOGY, 1982, 21 (04) :409-442
[19]   THE PROBLEM OF PLATEAU ON A RIEMANNIAN MANIFOLD [J].
MORREY, CB .
ANNALS OF MATHEMATICS, 1948, 49 (04) :807-851
[20]  
NELLI B, 1996, GEOMETRIC ANAL CALCU, P253