Homoclinic Solutions for p(t)-Laplacian-Hamiltonian Systems Without Coercive Conditions

被引:6
作者
Zhang, Ziheng [1 ]
Xiang, Tian [2 ]
Yuan, Rong [3 ]
机构
[1] Tianjin Polytech Univ, Dept Math, Tianjin 300387, Peoples R China
[2] Renmin Univ China, Inst Math Sci, Beijing 100872, Peoples R China
[3] Beijing Normal Univ, Dept Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Homoclinic solutions; critical point; variational methods; mountain pass theorem; genus; 2ND-ORDER HAMILTONIAN-SYSTEMS; VARIABLE EXPONENT; EXISTENCE; ORBITS; P(X)-LAPLACIAN; MULTIPLICITY;
D O I
10.1007/s00009-015-0580-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and multiplicity of homoclinic solutions for the following second-order p(t)-Laplacian-Hamiltonian systems d/dt(vertical bar(u) over dot(t)vertical bar p(t)(-2)(u) over dot(t)) - a(t)vertical bar u(t)vertical bar(p(t)-2) u(t) + del W (t, u(t)) = 0, where , , with p(t) > 1, , and is the gradient of W(t, u) in u. The point is that, assuming that a(t) is bounded in the sense that there are constants such that for all and W(t, u) is of super-p(t) growth or sub-p(t) growth as , we provide two new criteria to ensure the existence and multiplicity of homoclinic solutions, respectively. Recent results in the literature are extended and significantly improved.
引用
收藏
页码:1589 / 1611
页数:23
相关论文
共 48 条
[31]  
Qin B., 2014, ELECTRON J DIFFER EQ, V2014, P1
[32]  
Rabinowitz P.H., 1986, CBMS Reg. Conf. Ser. Math., V65
[33]   HOMOCLINIC ORBITS FOR A CLASS OF HAMILTONIAN-SYSTEMS [J].
RABINOWITZ, PH .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 114 :33-38
[34]   SOME RESULTS ON CONNECTING ORBITS FOR A CLASS OF HAMILTONIAN-SYSTEMS [J].
RABINOWITZ, PH ;
TANAKA, K .
MATHEMATISCHE ZEITSCHRIFT, 1991, 206 (03) :473-499
[35]  
Ruzicka M, 2000, LECT NOTES MATH, V1748, P1
[36]   Homoclinic orbits for a special class of nonautonomous Hamiltonian systems [J].
Salvatore, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) :4849-4857
[37]  
Salvatore A, 1997, DIFFER INTEGRAL EQU, V10, P381
[38]   Existence of homoclinic orbits for a class of p-Laplacian systems in a weighted Sobolev space [J].
Shi, Xiubo ;
Zhang, Qiongfen ;
Zhang, Qi-Ming .
BOUNDARY VALUE PROBLEMS, 2013,
[39]   Homoclinic solutions for a class of subquadratic second-order Hamiltonian systems [J].
Sun, Juntao ;
Chen, Haibo ;
Nieto, Juan J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (01) :20-29
[40]  
Tang XH, 2011, P ROY SOC EDINB A, V141, P1103