Homoclinic Solutions for p(t)-Laplacian-Hamiltonian Systems Without Coercive Conditions

被引:6
作者
Zhang, Ziheng [1 ]
Xiang, Tian [2 ]
Yuan, Rong [3 ]
机构
[1] Tianjin Polytech Univ, Dept Math, Tianjin 300387, Peoples R China
[2] Renmin Univ China, Inst Math Sci, Beijing 100872, Peoples R China
[3] Beijing Normal Univ, Dept Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Homoclinic solutions; critical point; variational methods; mountain pass theorem; genus; 2ND-ORDER HAMILTONIAN-SYSTEMS; VARIABLE EXPONENT; EXISTENCE; ORBITS; P(X)-LAPLACIAN; MULTIPLICITY;
D O I
10.1007/s00009-015-0580-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and multiplicity of homoclinic solutions for the following second-order p(t)-Laplacian-Hamiltonian systems d/dt(vertical bar(u) over dot(t)vertical bar p(t)(-2)(u) over dot(t)) - a(t)vertical bar u(t)vertical bar(p(t)-2) u(t) + del W (t, u(t)) = 0, where , , with p(t) > 1, , and is the gradient of W(t, u) in u. The point is that, assuming that a(t) is bounded in the sense that there are constants such that for all and W(t, u) is of super-p(t) growth or sub-p(t) growth as , we provide two new criteria to ensure the existence and multiplicity of homoclinic solutions, respectively. Recent results in the literature are extended and significantly improved.
引用
收藏
页码:1589 / 1611
页数:23
相关论文
共 48 条
[1]  
Admas R.A., 1975, Sobolev Spaces
[2]   Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation [J].
Alves, CO ;
Carriao, PC ;
Miyagaki, OH .
APPLIED MATHEMATICS LETTERS, 2003, 16 (05) :639-642
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]  
[Anonymous], 2005, MONITORING HEAVY MET
[5]  
[Anonymous], 1994, COMM APPL NONLINEAR
[6]  
Antontsev S.N., 2006, Ann. Univ. Ferrara. Sez., VVII, P19, DOI [DOI 10.1007/S11565-006-0002-9, 10.1007/s11565-006-0002-9]
[7]   A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions [J].
Antontsev, SN ;
Shmarev, SI .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (03) :515-545
[8]   New existence of homoclinic orbits for a second-order Hamiltonian system [J].
Chen, Peng ;
Tang, X. H. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (01) :131-141
[9]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[10]  
Coti Zelati V., 1991, J. Am. Math. Soc., V4, P693, DOI 10.1090/S0894-0347-1991-1119200-3