Control of linear systems subject to input constraints: a polynomial approach

被引:42
作者
Henrion, D
Tarbouriech, S
Kucera, V
机构
[1] CNRS, Lab Anal & Architecture Syst, F-31077 Toulouse 4, France
[2] Czech Tech Univ, Dept Control Engn, Fac Elect Engn, Prague 16627 6, Czech Republic
[3] Acad Sci Czech Republ, Inst Informat Theory & Automat, Prague 18208 8, Czech Republic
关键词
linear systems; input constraints; polynomial methods; Youla-Kucera parametrization; convex programming;
D O I
10.1016/S0005-1098(00)00193-X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A polynomial approach is pursued For locally stabilizing discrete-time linear systems subject to input constraints. Using the Youla-Kucera parametrization and geometric properties of polyhedra and ellipsoids, the problem of simultaneously deriving a stabilizing controller and the corresponding stability region is cast into standard convex optimization problems solved by linear, second-order cone and semidefinite programming. Key topics are touched on such as stabilization of multi-input multi-output plants or maximization of the size of the stability domain. Readily implementable algorithms are described. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:597 / 604
页数:8
相关论文
共 34 条
[1]   A CHRONOLOGICAL BIBLIOGRAPHY ON SATURATING ACTUATORS [J].
BERNSTEIN, DS ;
MICHEL, AN .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1995, 5 (05) :375-380
[2]   Set invariance in control [J].
Blanchini, F .
AUTOMATICA, 1999, 35 (11) :1747-1767
[3]  
Boyd S., 1994, SIAM STUDIES APPL MA
[4]   A NEW CAD METHOD AND ASSOCIATED ARCHITECTURES FOR LINEAR CONTROLLERS [J].
BOYD, SP ;
BALAKRISHNAN, V ;
BARRATT, CH ;
KHRAISHI, NM ;
LI, XM ;
MEYER, DG ;
NORMAN, SA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (03) :268-283
[5]  
BUELER B, 1998, POLYTOPES COMBINATOR
[6]   ON INVARIANT POLYHEDRA OF CONTINUOUS-TIME LINEAR-SYSTEMS [J].
CASTELAN, EB ;
HENNET, JC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (11) :1680-1685
[7]   A reduced-order framework applied to linear systems with constrained controls [J].
Castelan, EB ;
daSilva, JMG ;
Cury, JER .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (02) :249-255
[8]  
da Silva JM, 1998, P AMER CONTR CONF, P92, DOI 10.1109/ACC.1998.694635
[9]   Polyhedral regions of local stability for linear discrete-time systems with saturating controls [J].
da Silva, JMG ;
Tarbouriech, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (11) :2081-2085
[10]   LINEAR-SYSTEMS WITH STATE AND CONTROL CONSTRAINTS - THE THEORY AND APPLICATION OF MAXIMAL OUTPUT ADMISSIBLE-SETS [J].
GILBERT, EG ;
TAN, KT .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (09) :1008-1020