Essential Self-adjointness for Combinatorial Schrodinger Operators II-Metrically non Complete Graphs

被引:40
作者
de Verdiere, Yves Colin [1 ]
Torki-Hamza, Nabila [2 ]
Truc, Francoise [1 ]
机构
[1] Grenoble Univ, Inst Fourier, Unite Mixte Rech CNRS UJF 5582, F-38402 St Martin Dheres, France
[2] Univ 7 Novembre Carthage, Fac Sci Bizerte, Bizerte 7021, Tunisia
关键词
Metrically non complete graph; Weighted graph Laplacian; Schrodinger operator; Essential selfadjointness; LAPLACIAN; MANIFOLDS;
D O I
10.1007/s11040-010-9086-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider weighted graphs, we equip them with a metric structure given by a weighted distance, and we discuss essential self-adjointness for weighted graph Laplacians and Schrodinger operators in the metrically non complete case.
引用
收藏
页码:21 / 38
页数:18
相关论文
共 24 条
[1]  
[Anonymous], ARXIV09042985
[2]  
BEREZANSKII JM, 1968, TRANSLATIONS MATH MO, V17, P17
[3]   Essential self-adjointness of Schrodinger-type operators on manifolds [J].
Braverman, M ;
Milatovic, O ;
Shubin, M .
RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (04) :641-692
[4]   Singular continuous spectrum for the Laplacian on certain sparse trees [J].
Breuer, Jonathan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 269 (03) :851-857
[5]  
DEVERDIERE YC, 1982, ANN I FOURIER, V32, P275
[6]  
DEVERDIERE YC, 2010, ANN I FOURIER GRENOB, V60
[7]  
Dodziuk J., 2006, Elliptic operators on infinite graphs. Analysis, P353
[8]  
GOLENIA S, 2010, ARXIV10050165
[9]  
HAESELER S, 2010, ARXIV10021040
[10]  
HUANG X, 2010, ARXIV10092579