Multiple coincidences in dimensions d≤3

被引:5
作者
Baake, M. [1 ]
Zeiner, P. [1 ]
机构
[1] Univ Bielefeld, Fac Math, D-33501 Bielefeld, Germany
关键词
D O I
10.1080/14786430701264186
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ordinary coincidence site lattices (CSLs) are very well understood for a large class of lattices in dimensions d <= 4, as well as their generalization for various highly symmetric modules. Here, we consider multiple coincidence site lattices, i. e. intersections of several ordinary CSLs, which appear in connection with triple and multiple junctions. We restrict our considerations to the most prominent lattices in dimensions d <= 3 and present an outlook for further lattices and modules.
引用
收藏
页码:2869 / 2876
页数:8
相关论文
共 22 条
[11]   Coincidence site lattice theory of multicrystalline ensembles [J].
Gertsman, VY .
ACTA CRYSTALLOGRAPHICA SECTION A, 2001, 57 :649-655
[12]   COINCIDENCE-SITE LATTICES AND COMPLETE PATTERN-SHIFT LATTICES IN CUBIC-CRYSTALS [J].
GRIMMER, H ;
BOLLMANN, W ;
WARRINGTON, DH .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1974, A 30 (MAR) :197-207
[13]   DISORIENTATIONS AND COINCIDENCE ROTATIONS FOR CUBIC LATTICES [J].
GRIMMER, H .
ACTA CRYSTALLOGRAPHICA SECTION A, 1974, A 30 (NOV1) :685-688
[14]   THE GENERATING FUNCTION FOR COINCIDENCE SITE LATTICES IN THE CUBIC SYSTEM [J].
GRIMMER, H .
ACTA CRYSTALLOGRAPHICA SECTION A, 1984, 40 (MAR) :108-112
[15]  
Hardy G.H., 2000, INTRO THEORY NUMBERS
[16]  
Hurwitz A., 1919, VORLESUNGEN ZAHLENTH
[17]  
Koecher M., 1991, NUMBERS, V123, P189
[18]   Planar coincidences for N-fold symmetry [J].
Pleasants, PAB ;
Baake, M ;
Roth, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (02) :1029-1058
[19]  
Sloane NJA, 2003, ALGORITHM COMBINAT, V25, P799
[20]   Symmetries of coincidence site lattices of cubic lattices [J].
Zeiner, P .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (11) :915-925