Multiple coincidences in dimensions d≤3

被引:5
作者
Baake, M. [1 ]
Zeiner, P. [1 ]
机构
[1] Univ Bielefeld, Fac Math, D-33501 Bielefeld, Germany
关键词
D O I
10.1080/14786430701264186
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ordinary coincidence site lattices (CSLs) are very well understood for a large class of lattices in dimensions d <= 4, as well as their generalization for various highly symmetric modules. Here, we consider multiple coincidence site lattices, i. e. intersections of several ordinary CSLs, which appear in connection with triple and multiple junctions. We restrict our considerations to the most prominent lattices in dimensions d <= 3 and present an outlook for further lattices and modules.
引用
收藏
页码:2869 / 2876
页数:8
相关论文
共 22 条
  • [1] Bravais colourings of planar modules with N-fold symmetry
    Baake, M
    Grimm, U
    [J]. ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2004, 219 (02): : 72 - 80
  • [2] Baake M, 1997, NATO ADV SCI I C-MAT, V489, P9
  • [3] BAAKE M, IN PRESS DISCR COMP
  • [4] Multiple planar coincidences with N-fold symmetry
    Baake, Michael
    Grimm, Uwe
    [J]. ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2006, 221 (08): : 571 - 581
  • [5] A NEW FORMULATION FOR THE GENERATION OF COINCIDENCE SITE LATTICES (CSLS) IN THE CUBIC SYSTEM
    BLERIS, GL
    DELAVIGNETTE, P
    [J]. ACTA CRYSTALLOGRAPHICA SECTION A, 1981, 37 (NOV): : 779 - 786
  • [6] BOLLMAN W, 1970, CRYSTAL DEFECTS CRYS
  • [7] Bollmann W, 1982, Crystal lattices, interfaces, matrices
  • [8] Asymmetric multiple description lattice vector quantizers
    Diggavi, SN
    Sloane, NJA
    Vaishampayan, VA
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (01) : 174 - 191
  • [9] Du Val P., 1964, HOMOGRAPHIES QUATERN
  • [10] Geometrical theory of triple junctions of CSL boundaries
    Gertsman, VY
    [J]. ACTA CRYSTALLOGRAPHICA SECTION A, 2001, 57 : 369 - 377