Changes in coupled carbon-nitrogen dynamics in a tundra ecosystem predate post-1950 regional warming

被引:3
作者
Anderson, N. John [1 ]
Engstrom, Daniel R. [2 ]
Leavitt, Peter R. [3 ,4 ]
Flood, Sarah M. [1 ]
Heathcote, Adam J. [2 ]
机构
[1] Loughborough Univ, Geog & Environm, Loughborough LE11 3TU, Leics, England
[2] St Croix Watershed Res Stn, Sci Museum Minnesota, Marine St Croix, MN 55047 USA
[3] Univ Regina, Inst Environm Change & Soc, Regina, SK S4S 0A2, Canada
[4] Queens Univ Belfast, Inst Global Food Secur, Belfast BT9 5DL, Antrim, North Ireland
来源
COMMUNICATIONS EARTH & ENVIRONMENT | 2020年 / 1卷 / 01期
关键词
ORGANIC-MATTER; WATERSHED RETENTION; PERMAFROST CARBON; SURFACE SEDIMENTS; SHRUB EXPANSION; NORTHERN ALASKA; FRESH-WATER; LAKES; CLIMATE; DEPOSITION;
D O I
10.1038/s43247-020-00036-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Arctic ecosystems are changing in response to recent rapid warming, but the synergistic effects of other environmental drivers, such as moisture and atmospheric nitrogen (N) deposition, are difficult to discern due to limited monitoring records. Here we use geochemical analyses of Pb-210-dated lake-sediment cores from the North Slope of Alaska to show that changes in landscape nutrient dynamics started over 130 years ago. Lake carbon burial doubled between 1880 and the late-1990s, while current rates (similar to 10 g C m(-2) yr(-1)) represent about half the CO2 emission rate for tundra lakes. Lake C burial reflects increased aquatic production, stimulated initially by nutrients from terrestrial ecosystems due to late-19th century moisture-driven changes in soil microbial processes and, more recently, by atmospheric reactive N deposition. These results highlight the integrated response of Arctic carbon cycling to global environmental stressors and the degree to which C-N linkages were altered prior to post-1950 regional warming.
引用
收藏
页数:6
相关论文
共 73 条
[1]   Regional variability in the atmospheric nitrogen deposition signal and its transfer to the sediment record in Greenland lakes [J].
Anderson, N. J. ;
Curtis, C. J. ;
Whiteford, E. J. ;
Jones, V. J. ;
McGowan, S. ;
Simpson, G. L. ;
Kaiser, J. .
LIMNOLOGY AND OCEANOGRAPHY, 2018, 63 (05) :2250-2265
[2]  
Appleby P.G., 2001, Tracking Environmental Change Using Lake Sediments, P171, DOI [10.1007/0-306-47669-X_9, 10.1007/0-306-47669-X9, DOI 10.1007/0-306-47669-X_9]
[3]   Computation and analysis of multiple structural change models [J].
Bai, J ;
Perron, P .
JOURNAL OF APPLIED ECONOMETRICS, 2003, 18 (01) :1-22
[4]   Sediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska: Potential impacts on headwater stream ecosystems [J].
Bowden, W. B. ;
Gooseff, M. N. ;
Balser, A. ;
Green, A. ;
Peterson, B. J. ;
Bradford, J. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2008, 113 (G2)
[5]   Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges [J].
Bring, A. ;
Fedorova, I. ;
Dibike, Y. ;
Hinzman, L. ;
Mard, J. ;
Mernild, S. H. ;
Prowse, T. ;
Semenova, O. ;
Stuefer, S. L. ;
Woo, M-K. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2016, 121 (03) :621-649
[6]   Spatial variability of stable isotopes and fossil pigments in surface sediments of Alaskan coastal lakes: Constraints on quantitative estimates of past salmon abundance [J].
Brock, Curtis S. ;
Leavitt, Peter R. ;
Schindler, Daniel E. ;
Johnson, Susan P. ;
Moore, Jonathan W. .
LIMNOLOGY AND OCEANOGRAPHY, 2006, 51 (04) :1637-1647
[7]  
Chapin D. M., 1992, ARCTIC ECOSSYTEMS CH
[8]   The changing global carbon cycle: linking plant-soil carbon dynamics to global consequences [J].
Chapin, F. Stuart, III ;
McFarland, Jack ;
McGuire, A. David ;
Euskirchen, Eugenie S. ;
Ruess, Roger W. ;
Kielland, Knut .
JOURNAL OF ECOLOGY, 2009, 97 (05) :840-850
[9]  
Conley DJ, 2001, TRACKING ENV CHANGE, V3, P281
[10]   A SILICON BUDGET FOR AN ALASKAN ARCTIC LAKE [J].
CORNWELL, JC ;
BANAHAN, S .
HYDROBIOLOGIA, 1992, 240 (1-3) :37-44