Quantum-confined strain gradient effect in semiconductor nanomembranes

被引:5
|
作者
Binder, R. [1 ]
Gu, B.
Kwong, N. H.
机构
[1] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
来源
PHYSICAL REVIEW B | 2014年 / 90卷 / 19期
关键词
OPTICAL ANISOTROPY; HIGH-PERFORMANCE; UNIAXIAL-STRAIN; WELLS; TUBES; BAND;
D O I
10.1103/PhysRevB.90.195208
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Semiconductor nanomembranes can exhibit strain gradients that lead to quantum confinement effects similar to the well known quantum-confined Stark effect (QCSE) in semiconductor quantum wells. The deformation of square well into triangular well potential leads to modifications of the exciton resonance, but important differences between the quantum-confined strain gradient effect (QCsgE) and the QCSE include (i) the versatility of the QCsgE in which conduction and valence bands can have different slopes (even reverse slopes are possible), and (ii) the fact that in the QCsgE exciton shifts are determined by the gradients in the heavy-hole and light-hole energies as well as a gradient in the heavy-hole and light-hole coupling.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature
    Park, KyoungWon
    Deutsch, Zvicka
    Li, J. Jack
    Oron, Dan
    Weiss, Shimon
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [22] Single Molecule Quantum-Confined Stark Effect Measurements of Semiconductor Nanoparticles at Room Temperature
    Park, KyoungWon
    Deutsch, Zvicka
    Li, J. Jack
    Oron, Dan
    Weiss, Shimon
    ACS NANO, 2012, 6 (11) : 10013 - 10023
  • [23] Mesoscale Quantum-Confined Semiconductor Nanoplatelets through Seeded Growth
    Tenney, Stephanie Marie
    Tan, Lauren A.
    Sonnleitner, Mikayla L.
    Sica, Anthony V.
    Shin, Ashley Jiwon
    Ronquillo, Ricky
    Ahmed, Tasnim
    Atallah, Timothy Luke
    Caram, Justin Ryan
    CHEMISTRY OF MATERIALS, 2022, 34 (13) : 6048 - 6056
  • [24] QUANTUM-CONFINED 2-PHOTON ABSORPTION IN SEMICONDUCTOR MICROCRYSTALS
    BUGAEV, AA
    STANKEVICH, AL
    FIZIKA TVERDOGO TELA, 1992, 34 (05): : 1613 - 1619
  • [25] Giant optical anisotropy of semiconductor heterostructures with no common atom and the quantum-confined pockels effect
    Lab de Physique de la Matiere, Condensee de l'Ecole Normale, Superieure, Paris, France
    Phys Rev Lett, 9 (1829-1832):
  • [26] Giant optical anisotropy of semiconductor heterostructures with no common atom and the quantum-confined pockels effect
    Krebs, O
    Voisin, P
    PHYSICAL REVIEW LETTERS, 1996, 77 (09) : 1829 - 1832
  • [27] Internal efficiency of semiconductor lasers with a quantum-confined active region
    Asryan, LV
    Luryi, S
    Suris, RA
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2003, 39 (03) : 404 - 418
  • [29] Characterizing the Quantum-Confined Stark Effect in Semiconductor Quantum Dots and Nanorods for Single-Molecule Electrophysiology
    Kuo, Yung
    Li, Jack
    Michalet, Xavier
    Chizhik, Alexey
    Meir, Noga
    Bar-Elli, Omri
    Chan, Emory
    Oron, Dan
    Enderlein, Joerg
    Weiss, Shimon
    ACS PHOTONICS, 2018, 5 (12): : 4788 - 4800
  • [30] Excitonic contributions to the quantum-confined Pockels effect
    Toropov, AA
    Ivchenko, EL
    Krebs, O
    Cortez, S
    Voisin, P
    Gentner, JL
    PHYSICAL REVIEW B, 2001, 63 (03) : 353021 - 353028