Predicting Diabetes Mellitus With Machine Learning Techniques

被引:394
作者
Zou, Quan [1 ,2 ]
Qu, Kaiyang [1 ]
Luo, Yamei [3 ]
Yin, Dehui [3 ]
Ju, Ying [4 ]
Tang, Hua [5 ]
机构
[1] Tianjin Univ, Sch Comp Sci & Technol, Tianjin, Peoples R China
[2] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu, Sichuan, Peoples R China
[3] Southwest Med Univ, Sch Med Informat & Engn, Luzhou, Peoples R China
[4] Xiamen Univ, Sch Informat Sci & Technol, Xiamen, Peoples R China
[5] Southwest Med Univ, Sch Basic Med, Dept Pathophysiol, Luzhou, Peoples R China
关键词
diabetes mellitus; random forest; decision tree; neural network; machine learning; feature ranking; RANDOM FOREST; FEATURE-SELECTION; DIAGNOSIS; CLASSIFICATION; EXTRACTION; TOOL;
D O I
10.3389/fgene.2018.00515
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Diabetes mellitus is a chronic disease characterized by hyperglycemia. It may cause many complications. According to the growing morbidity in recent years, in 2040, the world's diabetic patients will reach 642 million, which means that one of the ten adults in the future is suffering from diabetes. There is no doubt that this alarming figure needs great attention. With the rapid development of machine learning, machine learning has been applied to many aspects of medical health. In this study, we used decision tree, random forest and neural network to predict diabetes mellitus. The dataset is the hospital physical examination data in Luzhou, China. It contains 14 attributes. In this study, five-fold cross validation was used to examine the models. In order to verity the universal applicability of the methods, we chose some methods that have the better performance to conduct independent test experiments. We randomly selected 68994 healthy people and diabetic patients' data, respectively as training set. Due to the data unbalance, we randomly extracted 5 times data. And the result is the average of these five experiments. In this study, we used principal component analysis (PCA) and minimum redundancy maximum relevance (mRMR) to reduce the dimensionality. The results showed that prediction with random forest could reach the highest accuracy (ACC = 0.8084) when all the attributes were used.
引用
收藏
页数:10
相关论文
共 58 条
[51]   Fast Prediction of Protein Methylation Sites Using a Sequence-Based Feature Selection Technique [J].
Wei, Leyi ;
Xing, Pengwei ;
Shi, Gaotao ;
Ji, Zhiliang ;
Zou, Quan .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (04) :1264-1273
[52]   The Rational Solutions and Quasi-Periodic Wave Solutions as well as Interactions of N-Soliton Solutions for 3+1 Dimensional Jimbo-Miwa Equation [J].
Yang, Hongwei ;
Zhang, Yong ;
Zhang, Xiaoen ;
Chen, Xin ;
Xu, Zhenhua .
ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
[53]   iRSpot-Pse6NC: Identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC [J].
Yang, Hui ;
Qiu, Wang-Ren ;
Liu, Guoqing ;
Guo, Feng-Biao ;
Chen, Wei ;
Chou, Kuo-Chen ;
Lin, Hao .
INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2018, 14 (08) :883-891
[54]   Low Rank Representation and Its Application in Bioinformatics [J].
You, Yuan ;
Cai, Hongmin ;
Chen, Jiazhou .
CURRENT BIOINFORMATICS, 2018, 13 (05) :508-517
[55]   An Intelligent Diagnosis to Type 2 Diabetes Based on QPSO Algorithm and WLS-SVM [J].
Yue, Chi ;
Xin, Liu ;
Xia Kewen ;
Chang, Su .
2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION WORKSHOP: IITA 2008 WORKSHOPS, PROCEEDINGS, 2008, :117-+
[56]  
Zhao XW, 2014, CURR PROTEOMICS, V11, P289
[57]   Pretata: predicting TATA binding proteins with novel features and dimensionality reduction strategy [J].
Zou, Quan ;
Wan, Shixiang ;
Ju, Ying ;
Tang, Jijun ;
Zeng, Xiangxiang .
BMC SYSTEMS BIOLOGY, 2016, 10
[58]   A novel features ranking metric with application to scalable visual and bioinformatics data classification [J].
Zou, Quan ;
Zeng, Jiancang ;
Cao, Liujuan ;
Ji, Rongrong .
NEUROCOMPUTING, 2016, 173 :346-354