Weak solutions for singular quasilinear elliptic systems

被引:5
作者
Singh, Gurpreet [1 ]
机构
[1] Univ Coll Dublin, Sch Math & Stat, Dublin 2, Ireland
关键词
Singular quasilinear elliptic systems; m-Laplace operator; weak solution; singular nonlinearity; regularity in Sobolev space; 35J92; 35J75; 35J47; GIERER-MEINHARDT SYSTEM; REGULARITY; EXISTENCE;
D O I
10.1080/17476933.2016.1178731
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the quasilinear elliptic system {-Delta(m)u = u(-p)v(-q), u > 0 in Omega, -Delta(m)v = u(r)v(-s), v > 0 in Omega, u = v = 0 on partial derivative Omega, where Omega subset of R-N(N >= 1) is a bounded and smooth domain, 1 < m < infinity, p, q, r, s > 0. Under certain conditions imposed on the exponents, we obtain the existence and uniqueness of a weak solution (u, v) with u, v is an element of W-0(1,m) (Omega) boolean AND C(Omega). We also investigate the W-0(1,tau) (Omega) regularity of solution and determine the optimal range of tau >= m for such regularity.
引用
收藏
页码:1389 / 1408
页数:20
相关论文
共 27 条
[1]  
[Anonymous], CONT MATH
[2]  
[Anonymous], OXOFRD LECT SERIES M
[3]  
[Anonymous], 2008, Adv. Differential Equations
[4]   Existence and multiplicity results for some Lane-Emden elliptic systems: Subquadratic case [J].
Barile, Sara ;
Salvatore, Addolorata .
ADVANCES IN NONLINEAR ANALYSIS, 2015, 4 (01) :25-35
[5]  
Bnilan P., 1995, Ann. Scuola Norm. Sup. Pisa Cl. Sci, V22, P241
[6]   Semilinear elliptic equations with singular nonlinearities [J].
Boccardo, Lucio ;
Orsina, Luigi .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (3-4) :363-380
[7]  
Bougherara B, 2015, ELECTRON J DIFFER EQ, P19
[8]   A singular Gierer-Meinhardt system of elliptic equations [J].
Choi, YS ;
McKenna, PJ .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (04) :503-522
[9]   A singular Gierer-Meinhardt system of elliptic equations: the classical case [J].
Choi, YS ;
McKenna, PJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 55 (05) :521-541
[10]   Existence of positive solutions for a nonvariational quasilinear elliptic system [J].
Clément, P ;
Fleckinger, J ;
Mitidieri, E ;
de Thélin, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 166 (02) :455-477