Visual Object Tracking Performance Measures Revisited

被引:139
作者
Cehovin, Luka [1 ]
Leonardis, Ales [1 ,2 ]
Kristan, Matej [1 ]
机构
[1] Univ Ljubljana, Fac Comp & Informat Sci, Ljubljana 1000, Slovenia
[2] Univ Birmingham, Sch Comp Sci, Ctr Computat Neurosci & Cognit Robot, Birmingham B15 2TT, W Midlands, England
关键词
Visual object tracking; performance evaluation; performance measures; experimental evaluation;
D O I
10.1109/TIP.2016.2520370
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of visual tracking evaluation is sporting a large variety of performance measures, and largely suffers from lack of consensus about which measures should be used in experiments. This makes the cross-paper tracker comparison difficult. Furthermore, as some measures may be less effective than others, the tracking results may be skewed or biased toward particular tracking aspects. In this paper, we revisit the popular performance measures and tracker performance visualizations and analyze them theoretically and experimentally. We show that several measures are equivalent from the point of information they provide for tracker comparison and, crucially, that some are more brittle than the others. Based on our analysis, we narrow down the set of potential measures to only two complementary ones, describing accuracy and robustness, thus pushing toward homogenization of the tracker evaluation methodology. These two measures can be intuitively interpreted and visualized and have been employed by the recent visual object tracking challenges as the foundation for the evaluation methodology.
引用
收藏
页码:1261 / 1274
页数:14
相关论文
共 53 条
[21]   MUlti-Store Tracker (MUSTer): a Cognitive Psychology Inspired Approach to Object Tracking [J].
Hong, Zhibin ;
Chen, Zhe ;
Wang, Chaohui ;
Mei, Xue ;
Prokhorov, Danil ;
Tao, Dacheng .
2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, :749-758
[22]  
Jaynes C., 2002, PROC IEEE WORKSHOP P, P32
[23]   P-N Learning: Bootstrapping Binary Classifiers by Structural Constraints [J].
Kalal, Zdenek ;
Matas, Jiri ;
Mikolajczyk, Krystian .
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, :49-56
[24]   An Information Theoretic Approach for Tracker Performance Evaluation [J].
Kao, Edward K. ;
Daggett, Matthew P. ;
Hurley, Michael B. .
2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, :1523-1529
[25]   Framework for Performance Evaluation of Face, Text, and Vehicle Detection and Tracking in Video: Data, Metrics, and Protocol [J].
Kasturi, Rangachar ;
Goldgof, Dmitry ;
Soundararajan, Padmanabhan ;
Manohar, Vasant ;
Garofolo, John ;
Bowers, Rachel ;
Boonstra, Matthew ;
Korzhova, Valentina ;
Zhang, Jing .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (02) :319-336
[26]   MCMC-based particle filtering for tracking a variable number of interacting targets [J].
Khan, Z ;
Balch, T ;
Dellaert, F .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (11) :1805-1819
[27]  
Kolsch M., 2004, Computer Vision and Pattern Recognition Workshop, P158
[28]   The Visual Object Tracking VOT2014 Challenge Results [J].
Kristan, Matej ;
Pflugfelder, Roman ;
Leonardis, Ales ;
Matas, Jiri ;
Cehovin, Luka ;
Nebehay, Georg ;
Vojir, Tomas ;
Fernandez, Gustavo ;
Lukezic, Alan ;
Dimitriev, Aleksandar ;
Petrosino, Alfredo ;
Saffari, Amir ;
Li, Bo ;
Han, Bohyung ;
Heng, CherKeng ;
Garcia, Christophe ;
Pangersic, Dominik ;
Haeger, Gustav ;
Khan, Fahad Shahbaz ;
Oven, Franci ;
Possegger, Horst ;
Bischof, Horst ;
Nam, Hyeonseob ;
Zhu, Jianke ;
Li, JiJia ;
Choi, Jin Young ;
Choi, Jin-Woo ;
Henriques, Joao F. ;
van de Weijer, Joost ;
Batista, Jorge ;
Lebeda, Karel ;
Oefjaell, Kristoffer ;
Yi, Kwang Moo ;
Qin, Lei ;
Wen, Longyin ;
Maresca, Mario Edoardo ;
Danelljan, Martin ;
Felsberg, Michael ;
Cheng, Ming-Ming ;
Torr, Philip ;
Huang, Qingming ;
Bowden, Richard ;
Hare, Sam ;
Lim, Samantha YueYing ;
Hong, Seunghoon ;
Liao, Shengcai ;
Hadfield, Simon ;
Li, Stan Z. ;
Duffner, Stefan ;
Golodetz, Stuart .
COMPUTER VISION - ECCV 2014 WORKSHOPS, PT II, 2015, 8926 :191-217
[29]   The Visual Object Tracking VOT2013 challenge results [J].
Kristan, Matej ;
Pflugfelder, Roman ;
Leonardis, Ales ;
Matas, Jiri ;
Porikli, Fatih ;
Cehovin, Luka ;
Nebehay, Georg ;
Fernandez, Gustavo ;
Vojir, Tomas ;
Gatt, Adam ;
Khajenezhad, Ahmad ;
Salahledin, Ahmed ;
Soltani-Farani, Ali ;
Zarezade, Ali ;
Petrosino, Alfredo ;
Milton, Anthony ;
Bozorgtabar, Behzad ;
Li, Bo ;
Chan, Chee Seng ;
Heng, CherKeng ;
Ward, Dale ;
Kearney, David ;
Monekosso, Dorothy ;
Karaimer, Hakki Can ;
Rabiee, Hamid R. ;
Zhu, Jianke ;
Gao, Jin ;
Xiao, Jingjing ;
Zhang, Junge ;
Xing, Junliang ;
Huang, Kaiqi ;
Lebeda, Karel ;
Cao, Lijun ;
Maresca, Mario Edoardo ;
Lim, Mei Kuan ;
ELHelw, Mohamed ;
Felsberg, Michael ;
Remagnino, Paolo ;
Bowden, Richard ;
Goecke, Roland ;
Stolkin, Rustam ;
Lim, Samantha YueYing ;
Maher, Sara ;
Poullot, Sebastien ;
Wong, Sebastien ;
Satoh, Shin'ichi ;
Chen, Weihua ;
Hu, Weiming ;
Zhang, Xiaoqin ;
Li, Yang .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2013, :98-111
[30]   A Two-Stage Dynamic Model for Visual Tracking [J].
Kristan, Matej ;
Kovacic, Stanislav ;
Leonardis, Ales ;
Pers, Janez .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (06) :1505-1520