Tools of the trade: estimating time-varying connectivity patterns from fMRI data

被引:50
|
作者
Iraji, Armin
Faghiri, Ashkan
Lewis, Noah
Fu, Zening
Rachakonda, Srinivas
Calhoun, Vince D. [1 ,2 ]
机构
[1] Georgia State Univ, Georgia Inst Technol, Triinst Ctr Translat Res Neuroimaging & Data Sci, Atlanta, GA 30303 USA
[2] Emory Univ, Atlanta, GA 30303 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
dynamic functional connectivity; spatially dynamic; temporally dynamic; spatiotemporally dynamic; fMRI; DYNAMIC FUNCTIONAL CONNECTIVITY; RESTING-STATE FMRI; NETWORK CONNECTIVITY; SCHIZOPHRENIA-PATIENTS; BRAIN CONNECTIVITY; FREQUENCY; VARIABILITY; REVEALS; FLUCTUATIONS; RELIABILITY;
D O I
10.1093/scan/nsaa114
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Given the dynamic nature of the brain, there has always been a motivation to move beyond 'static' functional connectivity, which characterizes functional interactions over an extended period of time. Progress in data acquisition and advances in analytical neuroimaging methods now allow us to assess the whole brain's dynamic functional connectivity (dFC) and its network-based analog, dynamic functional network connectivity at the macroscale (mm) using fMRI. This has resulted in the rapid growth of analytical approaches, some of which are very complex, requiring technical expertise that could daunt researchers and neuroscientists. Meanwhile, making real progress toward understanding the association between brain dynamism and brain disorders can only be achieved through research conducted by domain experts, such as neuroscientists and psychiatrists. This article aims to provide a gentle introduction to the application of dFC. We first explain what dFC is and the circumstances under which it can be used. Next, we review two major categories of analytical approaches to capture dFC. We discuss caveats and considerations in dFC analysis. Finally, we walk readers through an openly accessible toolbox to capture dFC properties and briefly review some of the dynamic metrics calculated using this toolbox.
引用
收藏
页码:849 / 874
页数:26
相关论文
共 50 条
  • [1] Data and model considerations for estimating time-varying functional connectivity in fMRI
    Ahrends, C.
    Stevner, A.
    Pervaiz, U.
    Kringelbach, M. L.
    Vuust, P.
    Woolrich, M. W.
    Vidaurre, D.
    NEUROIMAGE, 2022, 252
  • [2] Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI
    Taghia, Jalil
    Ryali, Srikanth
    Chen, Tianwen
    Supekar, Kaustubh
    Cai, Weidong
    Menon, Vinod
    NEUROIMAGE, 2017, 155 : 271 - 290
  • [3] Replicability of time-varying connectivity patterns in large resting state fMRI samples
    Abrol, Anees
    Damaraju, Eswar
    Miller, Robyn L.
    Stephen, Julia M.
    Claus, Eric D.
    Mayer, Andrew R.
    Calhoun, Vince D.
    NEUROIMAGE, 2017, 163 : 160 - 176
  • [4] The Chronnectome: Time-Varying Connectivity Networks as the Next Frontier in fMRI Data Discovery
    Calhoun, Vince D.
    Miller, Robyn
    Pearlson, Godfrey
    Adali, Tulay
    NEURON, 2014, 84 (02) : 262 - 274
  • [5] Simulations to benchmark time-varying connectivity methods for fMRI
    Thompson, William Hedley
    Richter, Craig Geoffrey
    Plaven-Sigray, Pontus
    Fransson, Peter
    PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (05)
  • [6] Manifold learning for fMRI time-varying functional connectivity
    Gonzalez-Castillo, Javier
    Fernandez, Isabel S. S.
    Lam, Ka Chun
    Handwerker, Daniel A. A.
    Pereira, Francisco
    Bandettini, Peter A. A.
    FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
  • [7] Semiparametric modeling of time-varying activation and connectivity in task-based fMRI data
    Park, Jun Young
    Polzehl, Joerg
    Chatterjee, Snigdhansu
    Brechmann, Andre
    Fiecas, Mark
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 150
  • [8] Estimating time-varying brain connectivity networks from functional MRI time series
    Monti, Ricardo Pio
    Hellyer, Peter
    Sharp, David
    Leech, Robert
    Anagnostopoulos, Christoforos
    Montana, Giovanni
    NEUROIMAGE, 2014, 103 : 427 - 443
  • [9] Questions and controversies in the study of time-varying functional connectivity in resting fMRI
    Lurie, Daniel J.
    Kessler, Daniel
    Bassett, Danielle S.
    Betzel, Richard F.
    Breakspear, Michael
    Kheilholz, Shella
    Kucyi, Aaron
    Liegeois, Raphael
    Lindquist, Martin A.
    McIntosh, Anthony Randal
    Poldrack, Russell A.
    Shine, James M.
    Thompson, William Hedley
    Bielczyk, Natalia Z.
    Douw, Linda
    Kraft, Dominik
    Miller, Robyn L.
    Muthuraman, Muthuraman
    Pasquini, Lorenzo
    Razi, Adeel
    Vidaurre, Diego
    Xie, Hua
    Calhoun, Vince D.
    NETWORK NEUROSCIENCE, 2020, 4 (01): : 30 - 69
  • [10] Investigating time-varying functional connectivity derived from the Jackknife Correlation method for distinguishing between emotions in fMRI data
    Shabnam Ghahari
    Naemeh Farahani
    Emad Fatemizadeh
    Ali Motie Nasrabadi
    Cognitive Neurodynamics, 2020, 14 : 457 - 471