Computer Vision for the Solar Dynamics Observatory (SDO)

被引:106
作者
Martens, P. C. H. [1 ,2 ]
Attrill, G. D. R. [2 ]
Davey, A. R. [2 ]
Engell, A. [2 ]
Farid, S. [2 ]
Grigis, P. C. [2 ]
Kasper, J. [2 ]
Korreck, K. [2 ]
Saar, S. H. [2 ]
Savcheva, A. [2 ,3 ]
Su, Y. [2 ]
Testa, P. [2 ]
Wills-Davey, M. [2 ]
Bernasconi, P. N. [4 ]
Raouafi, N. -E. [4 ]
Delouille, V. A. [5 ]
Hochedez, J. F. [5 ]
Cirtain, J. W. [6 ]
DeForest, C. E. [7 ]
Angryk, R. A. [8 ]
De Moortel, I. [9 ]
Wiegelmann, T. [10 ]
Georgoulis, M. K. [11 ]
McAteer, R. T. J. [12 ,13 ]
Timmons, R. P. [14 ]
机构
[1] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA
[2] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[3] Boston Univ, Dept Astron, Boston, MA 02215 USA
[4] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
[5] SIDC Royal Observ Belgium, B-1180 Brussels, Belgium
[6] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA
[7] SW Res Inst, Boulder, CO 80302 USA
[8] Montana State Univ, Dept Comp Sci, Bozeman, MT 59717 USA
[9] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
[10] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany
[11] Acad Athens, Res Ctr Astron & Appl Math, Athens 11527, Greece
[12] Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland
[13] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA
[14] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA
基金
美国国家科学基金会;
关键词
Instrumentation and data management; Solar Dynamics Observatory; CORONAL MASS EJECTIONS; HINODE XRT OBSERVATIONS; MAGNETIC-FIELDS; WAVELET ANALYSIS; FLUX ROPES; NUMERICAL SIMULATIONS; VECTOR MAGNETOGRAMS; AUTOMATIC DETECTION; FILAMENT DETECTION; CONE MODEL;
D O I
10.1007/s11207-010-9697-y
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, Xray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and ground-based H alpha data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre-Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic processing. This will allow the system to produce timely space-weather alerts and to guide the selection and production of quicklook images and movies, in addition to its prime mission of enabling solar science. We briefly describe the complex and unique data-processing pipeline, consisting of the hardware and control software required to handle the SDO data stream and accommodate the computer-vision modules, which has been set up at the Lockheed-Martin Space Astrophysics Laboratory (LMSAL), with an identical copy at the Smithsonian Astrophysical Observatory (SAO).
引用
收藏
页码:79 / 113
页数:35
相关论文
共 105 条
[2]   THE MAGNETIC-FIELD OF SOLAR PROMINENCES [J].
ANTIOCHOS, SK ;
DAHLBURG, RB ;
KLIMCHUK, JA .
ASTROPHYSICAL JOURNAL, 1994, 420 (01) :L41-L44
[3]   A model for solar coronal mass ejections [J].
Antiochos, SK ;
DeVore, CR ;
Klimchuk, JA .
ASTROPHYSICAL JOURNAL, 1999, 510 (01) :485-493
[4]   Evolution of conjugate footpoints inside flare ribbons during a great two-ribbon flare on 2001 April 10 [J].
Asai, A ;
Ishii, TT ;
Kurokawa, H ;
Yokoyama, T ;
Shimojo, M .
ASTROPHYSICAL JOURNAL, 2003, 586 (01) :624-629
[5]   Automatic Detection and Extraction of Coronal Dimmings from SDO/AIA Data [J].
Attrill, G. D. R. ;
Wills-Davey, M. J. .
SOLAR PHYSICS, 2010, 262 (02) :461-480
[6]  
Banda J.M., 2009, P 18 IEEE INT C FUZZ, DOI [doi:10.1109/FUZZY.2009.5277273, DOI 10.1109/FUZZY.2009.5277273]
[7]   Fast and robust segmentation of solar EUV images: algorithm and results for solar cycle 23 [J].
Barra, V. ;
Delouille, V. ;
Kretzschmar, M. ;
Hochedez, J. -F. .
ASTRONOMY & ASTROPHYSICS, 2009, 505 (01) :361-371
[8]  
Barra V., 2005, The Dynamic Sun: Challenges for Theory and Observations, pages, P71
[9]   Segmentation of extreme ultraviolet solar images via multichannel fuzzy clustering [J].
Barra, Vincent ;
Delouille, Veronique ;
Hochedez, Jean-Francois .
ADVANCES IN SPACE RESEARCH, 2008, 42 (05) :917-925
[10]   Comprehensive study of the initiation and early evolution of a coronal mass ejection from ultraviolet and white-light data [J].
Bemporad, A. ;
Raymond, J. ;
Poletto, G. ;
Romoli, M. .
ASTROPHYSICAL JOURNAL, 2007, 655 (01) :576-590