SPECIAL VALUES OF DIRICHLET SERIES AND ZETA INTEGRALS

被引:6
作者
Friedman, Eduardo [1 ]
Pereira, Aldo [1 ]
机构
[1] Univ Chile, Fac Ciencias, Dept Matemat, Santiago, Chile
关键词
Dirichlet series; special values; zeta integrals; GAMMA-FUNCTION; POLYNOMIALS; VARIABLES; THEOREM;
D O I
10.1142/S1793042112500406
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For f and g polynomials in p variables, we relate the special value at a non-positive integer s = -N, obtained by analytic continuation of the Dirichlet series zeta(s; f, g) = Sigma(infinity)(k1=0)...Sigma(infinity)(kp=0) g(k(1),..., k(p)) f (k(1),..., k(p))(-s) (Re(s) >> 0), to special values of zeta integrals Z(s; f, g) = integral(x is an element of[0,infinity)p) g(x) f(x)(-s) dx (Re(s) >> 0). We prove a simple relation between zeta(-N; f, g) and Z(-N; f(a), g(a)), where for a is an element of C-p, f(a)(x) is the shifted polynomial f(a)(x) = f(a + x). By direct calculation we prove the product rule for zeta integrals at s = 0, degree(fh) . Z(0; fh, g) = degree(f) . Z(0; f, g) + degree(h) . Z(0; h, g), and deduce the corresponding rule for Dirichlet series at s = 0, degree(fh) . zeta(0; fh, g) = degree(f) . zeta(0; f, g)+ degree(h) . zeta(0; h, g). This last formula generalizes work of Shintani and Chen-Eie.
引用
收藏
页码:697 / 714
页数:18
相关论文
共 18 条
[11]  
Iwaniec H., 2004, Amer. Math. Soc. Colloq. Publ., V53
[12]  
LICHTIN B, 1988, COMPOS MATH, V65, P81
[13]   Mellin's theorem [J].
Mahler, K .
MATHEMATISCHE ANNALEN, 1928, 100 :384-398
[14]  
Mellin Hj., 1900, Acta Soc. Sci. Fennicae, V29, P3
[15]  
Peter M, 1998, ACTA ARITH, V84, P245
[16]   MEROMORPHIC PROLONGATION OF DIRICHLET SERIES ASSOCIATED WITH RATIONAL FRACTIONS OF SEVERAL-VARIABLES [J].
SARGOS, P .
ANNALES DE L INSTITUT FOURIER, 1984, 34 (03) :83-123
[17]  
SHINTANI T, 1977, P INT S KYOT JAP SOC, P201
[18]  
WEIL A, 1983, NUMBER THEORY APPROA