SPECIAL VALUES OF DIRICHLET SERIES AND ZETA INTEGRALS

被引:6
作者
Friedman, Eduardo [1 ]
Pereira, Aldo [1 ]
机构
[1] Univ Chile, Fac Ciencias, Dept Matemat, Santiago, Chile
关键词
Dirichlet series; special values; zeta integrals; GAMMA-FUNCTION; POLYNOMIALS; VARIABLES; THEOREM;
D O I
10.1142/S1793042112500406
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For f and g polynomials in p variables, we relate the special value at a non-positive integer s = -N, obtained by analytic continuation of the Dirichlet series zeta(s; f, g) = Sigma(infinity)(k1=0)...Sigma(infinity)(kp=0) g(k(1),..., k(p)) f (k(1),..., k(p))(-s) (Re(s) >> 0), to special values of zeta integrals Z(s; f, g) = integral(x is an element of[0,infinity)p) g(x) f(x)(-s) dx (Re(s) >> 0). We prove a simple relation between zeta(-N; f, g) and Z(-N; f(a), g(a)), where for a is an element of C-p, f(a)(x) is the shifted polynomial f(a)(x) = f(a + x). By direct calculation we prove the product rule for zeta integrals at s = 0, degree(fh) . Z(0; fh, g) = degree(f) . Z(0; f, g) + degree(h) . Z(0; h, g), and deduce the corresponding rule for Dirichlet series at s = 0, degree(fh) . zeta(0; fh, g) = degree(f) . zeta(0; f, g)+ degree(h) . zeta(0; h, g). This last formula generalizes work of Shintani and Chen-Eie.
引用
收藏
页码:697 / 714
页数:18
相关论文
共 18 条
[1]  
[Anonymous], 1990, COURSE MORDERN ANAL
[2]  
[Anonymous], 1901, ACTA MATH, V25, P165
[3]   THE DIRICHLET SERIES AND INTEGRALS ASSOCIATED WITH A POLYNOMIAL WITH 2 INDETERMINATES [J].
CASSOUNOGUES, P .
JOURNAL OF NUMBER THEORY, 1986, 23 (01) :1-54
[4]  
Cohen H., 2007, NUMBER THEORY VOL 2
[5]  
Cohen H, 2008, ANN I FOURIER, V58, P363
[6]   Values at T-tuples of negative integers of twisted multivariable zeta series associated to polynomials of several variables [J].
de Crisenoy, Marc .
COMPOSITIO MATHEMATICA, 2006, 142 (06) :1373-1402
[7]  
Diaz FDY, 2008, MATH RES LETT, V15, P33
[8]   A theorem on zeta functions associated with polynomials [J].
Eie, MK ;
Chen, KW .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (08) :3217-3228
[9]   Singularities of Dirichlet series associated to polynomials of several variables and application to the analytic number theory [J].
Essouabri, D .
ANNALES DE L INSTITUT FOURIER, 1997, 47 (02) :429-&
[10]   Shintani-Barnes zeta and gamma functions [J].
Friedman, E ;
Ruijsenaars, S .
ADVANCES IN MATHEMATICS, 2004, 187 (02) :362-395