Distributed event-triggered adaptive partial diffusion strategy under dynamic network topology

被引:3
作者
Feng, Minyu [1 ]
Deng, Shuwei [1 ,3 ,4 ]
Chen, Feng [1 ,3 ,5 ]
Kurths, Juergen [2 ,6 ]
机构
[1] Southwest Univ, Coll Artificial Intelligence, Chongqing 400715, Peoples R China
[2] Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany
[3] Southwest Univ, Coll Elect & Informat Engn, Chongqing 400715, Peoples R China
[4] Key Lab Nonlinear Circuits & Intelligent Informat, Chongqing, Peoples R China
[5] Southwest Univ, Brain Inspired Comp & Intelligent Control Key Lab, Chongqing 400715, Peoples R China
[6] Humboldt Univ, Dept Phys, D-12489 Berlin, Germany
关键词
RECURSIVE LEAST-SQUARES; MEAN SQUARES; ALGORITHM; CONSENSUS; LMS; OPTIMIZATION; ADAPTATION;
D O I
10.1063/5.0007405
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In wireless sensor networks, the dynamic network topology and the limitation of communication resources may lead to degradation of the estimation performance of distributed algorithms. To solve this problem, we propose an event-triggered adaptive partial diffusion least mean-square algorithm (ET-APDLMS). On the one hand, the adaptive partial diffusion strategy adapts to the dynamic topology of the network while ensuring the estimation performance. On the other hand, the event-triggered mechanism can effectively reduce the data redundancy and save the communication resources of the network. The communication cost analysis of the ET-APDLMS algorithm is given in the performance analysis. The theoretical results prove that the algorithm is asymptotically unbiased, and it converges in the mean sense and the mean-square sense. In the simulation, we compare the mean-square deviation performance of the ET-APDLMS algorithm and other different diffusion algorithms. The simulation results are consistent with the performance analysis, which verifies the effectiveness of the proposed algorithm.
引用
收藏
页数:10
相关论文
共 35 条
  • [1] Abadir K. M., 2005, MATRIX ALGEBRA
  • [2] Abdolee R, 2012, EUR SIGNAL PR CONF, P749
  • [3] Adaptive Distributed Estimation Based on Recursive Least-Squares and Partial Diffusion
    Arablouei, Reza
    Dogancay, Kutluyil
    Werner, Stefan
    Huang, Yih-Fang
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (14) : 3510 - 3522
  • [4] Distributed Least Mean-Square Estimation With Partial Diffusion
    Arablouei, Reza
    Werner, Stefan
    Huang, Yih-Fang
    Dogancay, Kutluyil
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (02) : 472 - 484
  • [5] Low-Complexity Distributed Total Least Squares Estimation in Ad Hoc Sensor Networks
    Bertrand, Alexander
    Moonen, Marc
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (08) : 4321 - 4333
  • [6] Diffusion Bias-Compensated RLS Estimation Over Adaptive Networks
    Bertrand, Alexander
    Moonen, Marc
    Sayed, Ali H.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (11) : 5212 - 5224
  • [7] Consensus-Based Distributed Total Least Squares Estimation in Ad Hoc Wireless Sensor Networks
    Bertrand, Alexander
    Moonen, Marc
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (05) : 2320 - 2330
  • [8] A new class of incremental gradient methods for least squares problems
    Bertsekas, DP
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (04) : 913 - 926
  • [9] Distributed Incremental-Based LMS for Node-Specific Adaptive Parameter Estimation
    Bogdanovic, Nikola
    Plata-Chaves, Jorge
    Berberidis, Kostas
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (20) : 5382 - 5397
  • [10] Diffusion LMS Strategies for Distributed Estimation
    Cattivelli, Federico S.
    Sayed, Ali H.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1035 - 1048