Dynamic behaviors of a fractional order viscoelastic two-member truss

被引:3
作者
Li, Yuanping [1 ,2 ]
Zhang, Wei [3 ]
机构
[1] Jinan Univ, Key Lab Disaster Forecast & Control Engn, Minist Educ, Guangzhou 510632, Guangdong, Peoples R China
[2] Jinan Univ, Dept Mech & Civil Engn, Guangzhou 510632, Guangdong, Peoples R China
[3] Jinan Univ, Joint Lab JiNan Univ Kazan Fed Univ, Guangzhou 510632, Guangdong, Peoples R China
来源
ADVANCES IN CIVIL ENGINEERING, PTS 1-4 | 2011年 / 90-93卷
关键词
Fractional derivative; Viscoelasticity; two-member truss; Chaos; MODEL;
D O I
10.4028/www.scientific.net/AMM.90-93.951
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The fractional dynamics equation of a viscoelastic two-member truss system, in which fractional derivative model introduced to simulate the materials' characteristics, is proposed. The simplified single DOF differential equation is developed combined with boundary conditions and symmetry. Dynamic behaviors of the fractional single DOF system with harmonic loads are discussed by numerical calculations. The results show that: the system may lead to chaotic motion via period-doubling bifurcations or intermittent routes; the dynamical character is greatly inflected by the varying of excitation amplitude or damping coefficient or fractional order.
引用
收藏
页码:951 / +
页数:2
相关论文
共 10 条
[1]  
Barbosa R. S, 2004, 2 IEEE INT C COMP CY
[2]   Chaos in a modified van der Pol system and in its fractional order systenis [J].
Ge, Zheng-Ming ;
Zhang, An-Ray .
CHAOS SOLITONS & FRACTALS, 2007, 32 (05) :1791-1822
[3]  
Huang Fan, 2009, NONLINEAR DYNAMIC AR
[4]   Complete equilibrium paths for Mises trusses [J].
Kwasniewski, Leslaw .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2009, 44 (01) :19-26
[5]   Fractional derivative reconstruction of forced oscillators [J].
Lin, G. ;
Feeny, B. F. ;
Das, T. .
NONLINEAR DYNAMICS, 2009, 55 (03) :239-250
[6]  
Machado JAT., 2008, APPL FRACTIONAL CALC, P11
[7]   On a general model for damping [J].
Maia, NMM ;
Silva, JMM ;
Ribeiro, AMR .
JOURNAL OF SOUND AND VIBRATION, 1998, 218 (05) :749-767
[8]   Application of fractional calculus to the modeling of the complex rheological behavior of polymers:: From the glass transition to flow behavior.: I.: The theoretical model [J].
Reyes-Melo, M. E. ;
Gonzalez-Gonzalez, V. A. ;
Guerrero-Salazar, C. A. ;
Garcia-Cavazos, F. ;
Ortiz-Mendez, U. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 108 (02) :731-737
[9]  
Yang R.B., 2005, NONLINEAR DYNAMIC CH
[10]  
Yin-Shan Li, 2000, ENG MECH, V17, P140