Mann iteration process for asymptotic pointwise nonexpansive mappings in metric spaces

被引:21
作者
Ibn Dehaish, B. A. [2 ]
Khamsi, M. A. [1 ]
Khan, A. R. [3 ]
机构
[1] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
[2] King Abdulaziz Univ, Fac Sci Girls, Dept Math, Jeddah 21593, Saudi Arabia
[3] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
关键词
Asymptotically nonexpansive mapping; Asymptotic pointwise nonexpansive mapping; Fixed point; Inequality of Bruhat and Tits; Mann iteration process; Uniformly convex metric space; Uniformly Lipschitzian mapping; FIXED-POINTS; INEQUALITIES;
D O I
10.1016/j.jmaa.2012.08.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M, d) be a complete 2-uniformly convex metric space. Let C be a nonempty, bounded, closed, and convex subset of M, and let T : C -> C be an asymptotic pointwise nonexpansive mapping. In this paper, we prove that the modified Mann iteration process defined by Xn+1 = t(n)T(n) (x(n)) circle plus (1 - t(n))x(n) converges in a weaker sense to a fixed point of T. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:861 / 868
页数:8
相关论文
共 22 条
[1]  
[Anonymous], 1999, METRIC SPACES NONPOS
[2]  
Beauzamy B., 1985, Introduction to Banach Spaces and Their Geometry
[3]  
Bruhat F., 1972, Publications Mathematiques, V41, P5
[4]   SPACES WITH NON-POSITIVE CURVATURE [J].
BUSEMANN, H .
ACTA MATHEMATICA, 1948, 80 (04) :259-310
[5]  
Goebel K., 1984, SERIES MONOGRAPHS TX, V83
[6]   Applications of the best approximation operator to *-nonexpansive maps in Hilbert spaces [J].
Hussain, N ;
Khan, AR .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2003, 24 (3-4) :327-338
[7]   On asymptotic pointwise contractions in metric spaces [J].
Hussain, N. ;
Khamsi, M. A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4423-4429
[8]   Inequalities in metric spaces with applications [J].
Khamsi, M. A. ;
Khan, A. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (12) :4036-4045
[9]  
Khamsi M.A., 2001, An Introduction to Metric Spaces and Fixed Point Theory
[10]   Strong convergence of a general iteration scheme in CAT(0) spaces [J].
Khan, Abdul Rahim ;
Khamsi, Mohamed Amine ;
Fukhar-ud-Din, Hafiz .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (03) :783-791