Hop Domination in Graphs-II

被引:73
作者
Natarajan, C. [1 ]
Ayyaswamy, S. K. [1 ]
机构
[1] SASTRA Univ, Dept Math, Sch Humanities & Sci, Thanjavur 613401, Tamil Nadu, India
来源
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA | 2015年 / 23卷 / 02期
关键词
Hop domination number; total domination number; connected domination number;
D O I
10.1515/auom-2015-0036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph. A set S subset of V (G) is a hop dominating set of G if for every v is an element of V - S, there exists u is an element of S such that d(u, v) = 2. The minimum cardinality of a hop dominating set of G is called a hop domination number of G and is denoted by gamma(h)(G). In this paper we characterize the family of trees and unicyclic graphs for which gamma(h)(G) = gamma(t)(G) and gamma(h)(G) = gamma(c)(G) where gamma(t)(G) and gamma(c)(G) are the total domination and connected domination numbers of G respectively. We then present the strong equality of hop domination and hop independent domination numbers for trees. Hop domination numbers of shadow graph and mycielskian graph of graph are also discussed.
引用
收藏
页码:187 / 199
页数:13
相关论文
共 8 条
  • [1] [Anonymous], GRAPHS COMBINATORICS
  • [2] [Anonymous], DISCUSSIONES M UNPUB
  • [3] Chartrand G., 2005, GRAPHS DIGRAPHS
  • [4] Haynes T.W., 1998, FUNDAMENTALS DOMINAT, DOI 10.1201/9781482246582
  • [5] Strong equality of domination parameters in trees
    Haynes, TW
    Henning, MA
    Slater, PJ
    [J]. DISCRETE MATHEMATICS, 2003, 260 (1-3) : 77 - 87
  • [6] Haynes TW., 1998, Fundamentals of domination in graphs
  • [7] Lewis J. R., 2007, THESIS CLEMSON U
  • [8] Bounds on the distance two-domination number of a graph
    Sridharan, N
    Subramanian, VSA
    Elias, MD
    [J]. GRAPHS AND COMBINATORICS, 2002, 18 (03) : 667 - 675