Fast Total Variation Regularization for Higher Resolution in Fluorescence Tomography: A Split Bregman Iteration Approach

被引:0
作者
Behrooz, Ali [1 ]
Zhou, Hao-Min [2 ]
Eftekhar, Ali A. [1 ]
Adibi, Ali [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, 777 Atlantic Dr, Atlanta, GA 30332 USA
[2] Sch Math, Georgia Inst Technol, Atlanta, GA 30332 USA
来源
2011 IEEE PHOTONICS CONFERENCE (PHO) | 2011年
关键词
Medical imaging; fluorescence tomography; optical tomography; molecular imaging; in-vivo imaging;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an edge-preserving regularization for fluorescence tomography that improves its resolution and noise robustness through penalizing the total variation (TV) norm of the reconstructed fluorescent distribution. Results are validated by numerical and phantom-based studies.
引用
收藏
页码:725 / +
页数:2
相关论文
共 3 条
[1]  
Hansen P C., 1997, Rank-Deficient and Discrete Ill-Posed Problems. Numerical Aspects of Linear Inversion
[2]   Split Bregman iteration algorithm for total bounded variation regularization based image deblurring [J].
Liu, Xinwu ;
Huang, Lihong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 372 (02) :486-495
[3]   Fluorescence molecular imaging [J].
Nuiachristos, Vasifis .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2006, 8 :1-33