On the decay of higher order derivatives of solutions to Ladyzhenskaya model for incompressible viscous flows

被引:11
作者
Dong BoQing [1 ]
Jiang Wei [1 ]
机构
[1] Anhui Univ, Sch Math & Computat Sci, Hefei 230039, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2008年 / 51卷 / 05期
基金
中国国家自然科学基金;
关键词
Ladyzhenskaya model; L-2; decay; upper and lower bounds;
D O I
10.1007/s11425-007-0196-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article concerns large time behavior of Ladyzhenskaya model for incompressible viscous flows in R-3. Based on linear L-p-L-q estimates, the auxiliary decay properties of the solutions and generalized Gronwall type arguments, some optimal upper and lower bounds for the decay of higher order derivatives of solutions are derived without assuming any decay properties of solutions and using Fourier splitting technology.
引用
收藏
页码:925 / 934
页数:10
相关论文
共 21 条
[1]  
Bohme G, 1987, APPL MATH MECH
[2]   Time decay rates of non-Newtonian flows in R+n [J].
Dong, Bo-Qing ;
Chen, Zhi-Min .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (02) :820-833
[3]  
[董柏青 Dong Boqing], 2006, [数学物理学报. A辑, Acta Mathematica Scientia], V26, P498
[4]   Large time behavior to the system of incompressible non-Newtonian fluids in R2 [J].
Dong, BQ ;
Li, YS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (02) :667-676
[5]   Algebraic L2 decay for the solution to a class system of non-Newtonian fluid in Rn [J].
Guo, BL ;
Zhu, PC .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (01) :349-356
[6]   ON L2 DECAY OF WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS IN RN [J].
KAJIKIYA, R ;
MIYAKAWA, T .
MATHEMATISCHE ZEITSCHRIFT, 1986, 192 (01) :135-148
[8]  
Ladyzhenskaya O. A., 1969, MATH THEORY VISCOUS
[9]  
Ladyzhenskaya OA., 1967, T MAT I STEKLOVA, V102, P85
[10]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248