Single-station monitoring of volcanoes using seismic ambient noise

被引:49
|
作者
De Plaen, Raphael S. M. [1 ]
Lecocq, Thomas [2 ]
Caudron, Corentin [3 ]
Ferrazzini, Valerie [4 ]
Francis, Olivier [1 ]
机构
[1] Univ Luxembourg, Fac Sci Technol & Commun, Luxembourg, Luxembourg
[2] Royal Observ Belgium, Uccle, Belgium
[3] Univ Cambridge, Dept Earth Sci, Cambridge, England
[4] Univ Paris 07, CNRS, Inst Phys Globe Paris, Observ Volcanol Piton Fournaise,Sorbonne Paris Ci, Paris, France
关键词
single station; seismic noise correlation; volcano seismology; volcano monitoring; seismic velocity changes; LA-FOURNAISE VOLCANO; PASSIVE IMAGE INTERFEROMETRY; GREENS-FUNCTION; PITON; VELOCITY; EARTHQUAKE; FAULT; DEFORMATION; DYNAMICS; COLLAPSE;
D O I
10.1002/2016GL070078
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Seismic ambient noise cross correlation is increasingly used to monitor volcanic activity. However, this method is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single-station approach may provide a powerful and reliable alternative to the classical cross-station approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multidisciplinary continuous monitoring. Over the past decade, this volcano has been increasingly studied using the traditional cross-correlation technique and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2Hz frequency band. This opens new perspectives to successfully forecast volcanic activity at volcanoes equipped with a single three-component seismometer.
引用
收藏
页码:8511 / 8518
页数:8
相关论文
共 50 条
  • [11] Detecting earthquakes over a seismic network using single-station similarity measures
    Bergen, Karianne J.
    Beroza, Gregory C.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2018, 213 (03) : 1984 - 1998
  • [12] Single-station cross-correlation analysis of ambient seismic noise: application to stations in the surroundings of the 2008 Iwate-Miyagi Nairiku earthquake
    Hobiger, Manuel
    Wegler, Ulrich
    Shiomi, Katsuhiko
    Nakahara, Hisashi
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2014, 198 (01) : 90 - 109
  • [13] Single-station polarization analysis applied to seismic wavefields: A tutorial
    Greenhalgh, Stewart
    Sollberger, David
    Schmelzbach, Cedric
    Rutty, Matthew
    ADVANCES IN GEOPHYSICS, VOL 59, 2018, 59 : 123 - 170
  • [14] Single-station sigma
    Atkinson, GM
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2006, 96 (02) : 446 - 455
  • [15] Effect of coherent noise on single-station direction of arrival estimation
    Greenhalgh, Stewart Alan
    Zhou, Bing
    Rutty, Matthew
    JOURNAL OF SEISMOLOGY, 2008, 12 (03) : 377 - 385
  • [16] Investigating the subsurface in a shallow water environment using array and single-station ambient vibration techniques
    Shynkarenko, A.
    Lontsi, A. M.
    Kremer, K.
    Bergamo, P.
    Hobiger, M.
    Hallo, M.
    Faeh, D.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 227 (03) : 1857 - 1878
  • [17] Single-Station Multiparametric Seismic Monitoring of Copahue Volcano, Argentina-Chile (2018-2023)
    Casas, Jose Augusto
    Badi, Gabriela Alejandra
    Mikesell, Thomas Dylan
    Garcia, Sebastian Esteban
    Draganov, Deyan
    SEISMOLOGICAL RESEARCH LETTERS, 2024, 95 (05) : 2637 - 2650
  • [18] Effect of coherent noise on single-station direction of arrival estimation
    Stewart Alan Greenhalgh
    Bing Zhou
    Matthew Rutty
    Journal of Seismology, 2008, 12 : 377 - 385
  • [19] Single-station location of seismic events: a review and a plea for more research
    Frohlich, C
    Pulliam, J
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1999, 113 (1-4) : 277 - 291
  • [20] SAIPy: A Python']Python package for single-station earthquake monitoring using deep learning
    Li, Wei
    Chakraborty, Megha
    Cartaya, Claudia Quinteros
    Koehler, Jonas
    Faber, Johannes
    Meier, Men-Andrin
    Ruempker, Georg
    Srivastava, Nishtha
    COMPUTERS & GEOSCIENCES, 2024, 192