Eigenvectors of random matrices: A survey

被引:58
作者
O'Rourke, Sean [1 ]
Vu, Van [2 ]
Wang, Ke [3 ,4 ]
机构
[1] Univ Colorado, Dept Math, Boulder, CO 80309 USA
[2] Yale Univ, Dept Math, New Haven, CT 06520 USA
[3] Hong Kong Univ Sci & Technol, Jockey Club Inst Adv Study, Hong Kong, Hong Kong, Peoples R China
[4] CALTECH, Comp & Math Sci, Pasadena, CA 91125 USA
关键词
Eigenvectors; Random matrix; Random graph; Adjacency matrix; Random regular graph; LARGEST EIGENVALUES; BULK UNIVERSALITY; POISSON STATISTICS; LOCAL STATISTICS; SEMICIRCLE LAW; DELOCALIZATION; LOCALIZATION; DIFFUSION;
D O I
10.1016/j.jcta.2016.06.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Eigenvectors of large matrices (and graphs) play an essential role in combinatorics and theoretical computer science. The goal of this survey is to provide an up-to-date account on properties of eigenvectors when the matrix (or graph) is random. Published by Elsevier Inc.
引用
收藏
页码:361 / 442
页数:82
相关论文
共 86 条
[1]   QUANTUM ERGODICITY ON LARGE REGULAR GRAPHS [J].
Anantharaman, Nalini ;
Le Masson, Etienne .
DUKE MATHEMATICAL JOURNAL, 2015, 164 (04) :723-765
[2]  
[Anonymous], ARXIV150400396
[3]  
[Anonymous], ARXIV150604012
[4]  
[Anonymous], ARXIV160308845
[5]  
[Anonymous], ARXIV13121301
[6]  
[Anonymous], WILEY SERIES PROBABI
[7]  
Arora S., PREPRINT
[8]   Poisson convergence for the largest eigenvalues of heavy tailed random matrices [J].
Auffinger, Antonio ;
Ben Arous, Gerard ;
Peche, Sandrine .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03) :589-610
[9]  
Bai Z, 2010, SPRINGER SER STAT, P1, DOI 10.1007/978-1-4419-0661-8
[10]   Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices [J].
Baik, J ;
Ben Arous, G ;
Péché, S .
ANNALS OF PROBABILITY, 2005, 33 (05) :1643-1697