Soil Moisture Retrieval Using Polarimetric SAR Data and Experimental Observations in an Arid Environment

被引:4
作者
Gharechelou, Saeid [1 ]
Tateishi, Ryutaro [2 ]
Sumantyo, Josaphat Tetuko Sri [2 ]
Johnson, Brian Alan [3 ]
机构
[1] Shahrood Univ Technol, Fac Civil Engn, Shahrood 3619995161, Iran
[2] Chiba Univ, Ctr Environm Remote Sensing CEReS, Chiba 2638522, Japan
[3] Inst Global Environm Strategies IGES, Nat Resources & Ecosyst Serv Area, Hayama, Kanagawa 2400115, Japan
关键词
soil moisture; polarimetric SAR data; Oh; Dubois; ALOS; SYNTHETIC-APERTURE RADAR; INTEGRAL-EQUATION MODEL; C-BAND; SURFACE-ROUGHNESS; TERRASAR-X; SEMIEMPIRICAL CALIBRATION; MULTI-INCIDENCE; BARE; PARAMETERS; INVERSION;
D O I
10.3390/ijgi10100711
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Soil moisture is a critical component for Earth science studies, and Synthetic Aperture Radar (SAR) data have high potential for retrieving soil moisture using backscattering models. In this study, polarimetric SAR (PALSAR: Phased Array type L-band Synthetic Aperture Radar) data and polarimetric decompositions including span, entropy/H/alpha, and anisotropy, in combination with surface properties resulting from field and laboratory measurements, are used to categorize the natural surface condition and discriminate the backscatter parameter in the test site for applying the inversion soil moisture retrieval. The work aims to introduce the better of two examined models in the research for soil moisture retrieval over the bare land and sparse vegetation in arid regions. After soil moisture retrieval using the two different models, the results of comparison and validation by field measurement of soil moisture have shown that the Oh model has a more realiable accuracy for soil moisture mapping, although it was very difficult to find the best model due to different characteristics in land cover. It seems the inversion model, with the field observation and polarimetric SAR data, has a good potential for extracting surface natural conditions such as surface roughness and soil moisture; however, over- and under-estimation are observed due to land cover variability. The estimation of accurate roughness and moisture data for each type of land cover can increase the accuracy of the results.
引用
收藏
页数:17
相关论文
共 57 条
[1]   Classification comparisons between dual-pol, compact polarimetric and quad-pol SAR imagery [J].
Ainsworth, T. L. ;
Kelly, J. P. ;
Lee, J. -S. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2009, 64 (05) :464-471
[2]   Toward an Operational Bare Soil Moisture Mapping Using TerraSAR-X Data Acquired Over Agricultural Areas [J].
Aubert, Maelle ;
Baghdadi, Nicolas N. ;
Zribi, Mehrez ;
Ose, Kenji ;
El Hajj, Mahmoud ;
Vaudour, Emmanuelle ;
Gonzalez-Sosa, Enrique .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (02) :900-916
[3]   Cereal Crops Soil Parameters Retrieval Using L-Band ALOS-2 and C-Band Sentinel-1 Sensors [J].
Ayari, Emna ;
Kassouk, Zeineb ;
Lili-Chabaane, Zohra ;
Baghdadi, Nicolas ;
Bousbih, Safa ;
Zribi, Mehrez .
REMOTE SENSING, 2021, 13 (07)
[4]   Soil moisture estimation using multi-incidence and multi-polarization ASAR data [J].
Baghdadi, N. ;
Holah, N. ;
Zribi, M. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (9-10) :1907-1920
[5]   Evaluation of radar backscatter models IEM, OH and Dubois using experimental observations [J].
Baghdadi, Nicolas ;
Zribi, Mehrez .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (18) :3831-3852
[6]   Semi-Empirical Calibration of the Integral Equation Model for Co-Polarized L-Band Backscattering [J].
Baghdadi, Nicolas ;
Zribi, Mehrez ;
Paloscia, Simonetta ;
Verhoest, Niko E. C. ;
Lievens, Hans ;
Baup, Frederic ;
Mattia, Francesco .
REMOTE SENSING, 2015, 7 (10) :13626-13640
[7]   Evaluation of Radar Backscattering Models IEM, Oh, and Dubois for SAR Data in X-Band Over Bare Soils [J].
Baghdadi, Nicolas ;
Saba, Elie ;
Aubert, Maelle ;
Zribi, Mehrez ;
Baup, Frederic .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (06) :1160-1164
[8]   Semiempirical Calibration of the Integral Equation Model for SAR Data in C-Band and Cross Polarization Using Radar Images and Field Measurements [J].
Baghdadi, Nicolas ;
Abou Chaaya, Jad ;
Zribi, Mehrez .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (01) :14-18
[9]   On the use of temporal series of L-and X-band SAR data for soil moisture retrieval. Capitanata plain case study [J].
Balenzano, Anna ;
Satalino, Giuseppe ;
Lovergine, Francesco ;
Rinaldi, Michele ;
Iacobellis, Vito ;
Mastronardi, Nicola ;
Mattia, Francesco .
EUROPEAN JOURNAL OF REMOTE SENSING, 2013, 46 :721-737
[10]   Retrieval of biophysical parameters of agricultural crops using polarimetric SAR interferometry [J].
Ballester-Berman, JD ;
Lopez-Sanchez, JM ;
Fortuny-Guasch, J .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (04) :683-694