The development of "automated visual evaluation" for cervical cancer screening: The promise and challenges in adapting deep-learning for clinical testing

被引:40
作者
Desai, Kanan T. [1 ]
Befano, Brian [2 ,3 ]
Xue, Zhiyun [4 ]
Kelly, Helen [1 ]
Campos, Nicole G. [5 ]
Egemen, Didem [1 ]
Gage, Julia C. [1 ]
Rodriguez, Ana-Cecilia [1 ]
Sahasrabuddhe, Vikrant [6 ]
Levitz, David [1 ]
Pearlman, Paul [7 ]
Jeronimo, Jose [1 ]
Antani, Sameer [4 ]
Schiffman, Mark [1 ]
de Sanjose, Silvia [1 ,8 ]
机构
[1] NCI, Div Canc Epidemiol & Genet, Rockville, MD USA
[2] Informat Management Serv Inc, Calverton, MD USA
[3] Univ Washington, Dept Epidemiol, Sch Publ Hlth, Seattle, WA 98195 USA
[4] US Natl Lib Med, Bethesda, MD USA
[5] Harvard TH Chan Sch Publ Hlth, Ctr Hlth Decis Sci, Boston, MA USA
[6] NCI, Div Canc Prevent, Rockville, MD USA
[7] NCI, Ctr Global Hlth, Rockville, MD USA
[8] ISGlobal, Barcelona, Spain
关键词
artificial intelligence; cervical cancer screening; clinical validation; HPV tests; visual triage; HUMAN-PAPILLOMAVIRUS; POSITIVE WOMEN; ACETIC-ACID; INSPECTION; PRECANCER;
D O I
10.1002/ijc.33879
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
There is limited access to effective cervical cancer screening programs in many resource-limited settings, resulting in continued high cervical cancer burden. Human papillomavirus (HPV) testing is increasingly recognized to be the preferable primary screening approach if affordable due to superior long-term reassurance when negative and adaptability to self-sampling. Visual inspection with acetic acid (VIA) is an inexpensive but subjective and inaccurate method widely used in resource-limited settings, either for primary screening or for triage of HPV-positive individuals. A deep learning (DL)-based automated visual evaluation (AVE) of cervical images has been developed to help improve the accuracy and reproducibility of VIA as assistive technology. However, like any new clinical technology, rigorous evaluation and proof of clinical effectiveness are required before AVE is implemented widely. In the current article, we outline essential clinical and technical considerations involved in building a validated DL-based AVE tool for broad use as a clinical test.
引用
收藏
页码:741 / 752
页数:12
相关论文
共 70 条
[11]   Accuracy of combinations of visual inspection using acetic acid or lugol iodine to detect cervical precancer: a meta-analysis [J].
Catarino, R. ;
Schafer, S. ;
Vassilakos, P. ;
Petignat, P. ;
Arbyn, M. .
BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2018, 125 (05) :545-553
[12]   Multi-Institutional Assessment and Crowdsourcing Evaluation of Deep Learning for Automated Classification of Breast Density [J].
Chang, Ken ;
Beers, Andrew L. ;
Brink, Laura ;
Patel, Jay B. ;
Singh, Praveer ;
Arun, Nishanth T. ;
Hoebel, Katharina V. ;
Gaw, Nathan ;
Shah, Meesam ;
Pisano, Etta D. ;
Tilkin, Mike ;
Coombs, Laura P. ;
Dreyer, Keith J. ;
Allen, Bibb ;
Agarwal, Sheela ;
Kalpathy-Cramer, Jayashree .
JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2020, 17 (12) :1653-1662
[13]   Deep Learning: A Primer for Radiologists [J].
Chartrand, Gabriel ;
Cheng, Phillip M. ;
Vorontsov, Eugene ;
Drozdzal, Michal ;
Turcotte, Simon ;
Pal, Christopher J. ;
Kadoury, Samuel ;
Tang, An .
RADIOGRAPHICS, 2017, 37 (07) :2113-2131
[14]  
Cho Angela, 2019, Obstet Gynecol Sci, V62, P138, DOI 10.5468/ogs.2019.62.2.138
[15]   Introduction to Machine Learning, Neural Networks, and Deep Learning [J].
Choi, Rene Y. ;
Coyner, Aaron S. ;
Kalpathy-Cramer, Jayashree ;
Chiang, Michael F. ;
Campbell, J. Peter .
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2020, 9 (02)
[16]   Carcinogenicity of Human Papillomavirus (HPV) Types in HIV-Positive Women: A Meta-Analysis From HPV Infection to Cervical Cancer [J].
Clifford, Gary M. ;
Tully, Stephen ;
Franceschi, Silvia .
CLINICAL INFECTIOUS DISEASES, 2017, 64 (09) :1228-1235
[17]   Burden of Human Papillomavirus (HPV)-Related Cancers Attributable to HPVs 6/11/16/18/31/33/45/52 and 58 [J].
de Sanjose, Silvia ;
Serrano, Beatriz ;
Tous, Sara ;
Alejo, Maria ;
Lloveras, Belen ;
Quiros, Beatriz ;
Clavero, Omar ;
Vidal, August ;
Ferrandiz-Pulido, Carla ;
Angel Pavon, Miquel ;
Holzinger, Dana ;
Halec, Gordana ;
Tommasino, Massimo ;
Quint, Wim ;
Pawlita, Michael ;
Munoz, Nubia ;
Xavier Bosch, Francesc ;
Alemany, Laia .
JNCI CANCER SPECTRUM, 2018, 2 (04)
[18]   A study of type-specific HPV natural history and implications for contemporary cervical cancer screening programs [J].
Demarco, Maria ;
Hyun, Noorie ;
Carter-Pokras, Olivia ;
Raine-Bennett, Tina R. ;
Cheung, Li ;
Chen, Xiaojian ;
Hammer, Anne ;
Campos, Nicole ;
Kinney, Walter ;
Gage, Julia C. ;
Befano, Brian ;
Perkins, Rebecca B. ;
He, Xin ;
Dallal, Cher ;
Chen, Jie ;
Poitras, Nancy ;
Mayrand, Marie-Helene ;
Coutlee, Francois ;
Burk, Robert D. ;
Lorey, Thomas ;
Castle, Philip E. ;
Wentzensen, Nicolas ;
Schiffman, Mark .
ECLINICALMEDICINE, 2020, 22
[19]   Design and feasibility of a novel program of cervical screening in Nigeria: self-sampled HPV testing paired with visual triage [J].
Desai, Kanan T. ;
Ajenifuja, Kayode O. ;
Banjo, Adekunbiola ;
Adepiti, Clement A. ;
Novetsky, Akiva ;
Sebag, Cathy ;
Einstein, Mark H. ;
Oyinloye, Temitope ;
Litwin, Tamara R. ;
Horning, Matt ;
Olanrewaju, Fatai Olatunde ;
Oripelaye, Mufutau Muphy ;
Afolabi, Esther ;
Odujoko, Oluwole O. ;
Castle, Philip E. ;
Antani, Sameer ;
Wilson, Ben ;
Hu, Liming ;
Mehanian, Courosh ;
Demarco, Maria ;
Gage, Julia C. ;
Xue, Zhiyun ;
Long, Leonard R. ;
Cheung, Li ;
Egemen, Didem ;
Wentzensen, Nicolas ;
Schiffman, Mark .
INFECTIOUS AGENTS AND CANCER, 2020, 15 (01)
[20]   Evaluating Machine Learning Articles [J].
Doshi-Velez, Finale ;
Perlis, Roy H. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2019, 322 (18) :1777-1779