The development of "automated visual evaluation" for cervical cancer screening: The promise and challenges in adapting deep-learning for clinical testing

被引:40
作者
Desai, Kanan T. [1 ]
Befano, Brian [2 ,3 ]
Xue, Zhiyun [4 ]
Kelly, Helen [1 ]
Campos, Nicole G. [5 ]
Egemen, Didem [1 ]
Gage, Julia C. [1 ]
Rodriguez, Ana-Cecilia [1 ]
Sahasrabuddhe, Vikrant [6 ]
Levitz, David [1 ]
Pearlman, Paul [7 ]
Jeronimo, Jose [1 ]
Antani, Sameer [4 ]
Schiffman, Mark [1 ]
de Sanjose, Silvia [1 ,8 ]
机构
[1] NCI, Div Canc Epidemiol & Genet, Rockville, MD USA
[2] Informat Management Serv Inc, Calverton, MD USA
[3] Univ Washington, Dept Epidemiol, Sch Publ Hlth, Seattle, WA 98195 USA
[4] US Natl Lib Med, Bethesda, MD USA
[5] Harvard TH Chan Sch Publ Hlth, Ctr Hlth Decis Sci, Boston, MA USA
[6] NCI, Div Canc Prevent, Rockville, MD USA
[7] NCI, Ctr Global Hlth, Rockville, MD USA
[8] ISGlobal, Barcelona, Spain
关键词
artificial intelligence; cervical cancer screening; clinical validation; HPV tests; visual triage; HUMAN-PAPILLOMAVIRUS; POSITIVE WOMEN; ACETIC-ACID; INSPECTION; PRECANCER;
D O I
10.1002/ijc.33879
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
There is limited access to effective cervical cancer screening programs in many resource-limited settings, resulting in continued high cervical cancer burden. Human papillomavirus (HPV) testing is increasingly recognized to be the preferable primary screening approach if affordable due to superior long-term reassurance when negative and adaptability to self-sampling. Visual inspection with acetic acid (VIA) is an inexpensive but subjective and inaccurate method widely used in resource-limited settings, either for primary screening or for triage of HPV-positive individuals. A deep learning (DL)-based automated visual evaluation (AVE) of cervical images has been developed to help improve the accuracy and reproducibility of VIA as assistive technology. However, like any new clinical technology, rigorous evaluation and proof of clinical effectiveness are required before AVE is implemented widely. In the current article, we outline essential clinical and technical considerations involved in building a validated DL-based AVE tool for broad use as a clinical test.
引用
收藏
页码:741 / 752
页数:12
相关论文
共 70 条
[1]   Designing low-cost, accurate cervical screening strategies that take into account COVID-19: a role for self-sampled HPV typing2 [J].
Ajenifuja, Kayode Olusegun ;
Belinson, Jerome ;
Goldstein, Andrew ;
Desai, Kanan T. ;
de Sanjose, Silvia ;
Schiffman, Mark .
INFECTIOUS AGENTS AND CANCER, 2020, 15 (01)
[2]   A Population-Based Study of Visual Inspection With Acetic Acid (VIA) for Cervical Screening in Rural Nigeria [J].
Ajenifuja, Kayode Olusegun ;
Gage, Julia C. ;
Adepiti, Akinfolarin C. ;
Wentzensen, Nicolas ;
Eklund, Claire ;
Reilly, Mary ;
Hutchinson, Martha ;
Burk, Robert D. ;
Schiffman, Mark .
INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2013, 23 (03) :507-512
[3]   Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing [J].
AlBadawy, Ehab A. ;
Saha, Ashirbani ;
Mazurowski, Maciej A. .
MEDICAL PHYSICS, 2018, 45 (03) :1150-1158
[4]   Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis [J].
Arbyn, Marc ;
Weiderpass, Elisabete ;
Bruni, Laia ;
de Sanjose, Silvia ;
Saraiya, Mona ;
Ferlay, Jacques ;
Bray, Freddie .
LANCET GLOBAL HEALTH, 2020, 8 (02) :E191-E203
[5]   Detecting cervical precancer and reaching underscreened women by using HPV testing on self samples: updated meta-analyses [J].
Arbyn, Marc ;
Smith, Sara B. ;
Temin, Sarah ;
Sultana, Farhana ;
Castle, Philip .
BMJ-BRITISH MEDICAL JOURNAL, 2018, 363
[6]   A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy [J].
Beede, Emma ;
Baylor, Elizabeth ;
Hersch, Fred ;
Iurchenko, Anna ;
Wilcox, Lauren ;
Ruamviboonsuk, Paisan ;
Vardoulakis, Laura M. .
PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), 2020,
[7]   A proposed new generation of evidence-based microsimulation models to inform global control of cervical cancer [J].
Campos, Nicole G. ;
Demarco, Maria ;
Bruni, Laia ;
Desai, Kanan T. ;
Gage, Julia C. ;
Adebamowo, Sally N. ;
de Sanjose, Silvia ;
Kim, Jane J. ;
Schiffman, Mark .
PREVENTIVE MEDICINE, 2021, 144
[8]   CIN2 is a much less reproducible and less valid diagnosis than CIN3: Results from a histological review of population-based cervical samples [J].
Carreon, Joseph D. ;
Sherman, Mark E. ;
Guillen, Diego ;
Solomon, Diane ;
Herrero, Rolando ;
Jeronimo, Jose ;
Wacholder, Sholom ;
Rodriguez, Ana Cecilia ;
Morales, Jorge ;
Hutchinson, Martha ;
Burk, Robert D. ;
Schiffman, Mark .
INTERNATIONAL JOURNAL OF GYNECOLOGICAL PATHOLOGY, 2007, 26 (04) :441-446
[9]   A Pooled Analysis to Compare the Clinical Characteristics of Human Papillomavirus-positive and -Negative Cervical Precancers [J].
Castle, Philip E. ;
Pierz, Amanda J. ;
Adcock, Rachael ;
Aslam, Shagufta ;
Basu, Partha S. ;
Belinson, Jerome L. ;
Cuzick, Jack ;
El-Zein, Mariam ;
Ferreccio, Catterina ;
Firnhaber, Cynthia ;
Franco, Eduardo L. ;
Gravitt, Patti E. ;
Isidean, Sandra D. ;
Lin, John ;
Mahmud, Salaheddin M. ;
Monsonego, Joseph ;
Muwonge, Richard ;
Ratnam, Samuel ;
Safaeian, Mahboobeh ;
Schiffman, Mark ;
Smith, Jennifer S. ;
Swarts, Avril ;
Wright, Thomas C. ;
Van De Wyngard, Vanessa ;
Xi, Long Fu .
CANCER PREVENTION RESEARCH, 2020, 13 (10) :829-840
[10]   Human Papillomavirus Genotypes in Cervical Intraepithelial Neoplasia Grade 3 [J].
Castle, Philip E. ;
Schiffman, Mark ;
Wheeler, Cosette M. ;
Wentzensen, Nicolas ;
Gravitt, Patti E. .
CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2010, 19 (07) :1675-1681