Rational Design of Dot-on-Rod Nano-Heterostructure for Photocatalytic CO2 Reduction: Pivotal Role of Hole Transfer and Utilization

被引:82
作者
Xin, Zhi-Kun [1 ,2 ]
Gao, Yu-Ji [1 ]
Gao, Yuying [3 ]
Song, Hong-Wei [4 ]
Zhao, Jiaqing [1 ]
Fan, Fengtao [3 ]
Xia, An-Dong [5 ]
Li, Xu-Bing [1 ,2 ]
Tung, Chen-Ho [1 ,2 ]
Wu, Li-Zhu [1 ,2 ]
机构
[1] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Photochem Convers & Optoelect Mat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Future Technol, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Dalian Inst Chem Phys, Collaborat Innovat Ctr Chem Energy Mat iChEM, Dalian Natl Lab Clean Energy,State Key Lab Cataly, Dalian 116023, Peoples R China
[4] Chinese Acad Sci, Inst Chem, Key Lab Photochem, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
[5] Beijing Univ Posts & Commun, Sch Sci, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
artificial photosynthesis; charge-carrier kinetics; CO; (2) photoreduction; dot-on-rod nano-heterostructures; hole transfer; QUANTUM DOTS; SEMICONDUCTOR NANOCRYSTALS; CHARGE SEPARATION; PHOTOREDUCTION; GENERATION; DYNAMICS; WATER; H-2;
D O I
10.1002/adma.202106662
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Inspired by green plants, artificial photosynthesis has become one of the most attractive approaches toward carbon dioxide (CO2) valorization. Semiconductor quantum dots (QDs) or dot-in-rod (DIR) nano-heterostructures have gained substantial research interest in multielectron photoredox reactions. However, fast electron-hole recombination or sluggish hole transfer and utilization remains unsatisfactory for their potential applications. Here, the first application of a well-designed ZnSe/CdS dot-on-rods (DORs) nano-heterostructure for efficient and selective CO2 photoreduction with H2O as an electron donor is presented. In-depth spectroscopic studies reveal that surface-anchored ZnSe QDs not only assist ultrafast (approximate to 2 ps) electron and hole separation, but also promote interfacial hole transfer participating in oxidative half-reactions. Surface photovoltage (SPV) spectroscopy provides a direct image of spatially separated electrons in CdS and holes in ZnSe. Therefore, ZnSe/CdS DORs photocatalyze CO2 to CO with a rate of approximate to 11.3 mu mol g(-1) h(-1) and >= 85% selectivity, much higher than that of ZnSe/CdS DIRs or pristine CdS nanorods under identical conditions. Obviously, favored energy-level alignment and unique morphology balance the utilization of electrons and holes in this nano-heterostructure, thus enhancing the performance of artificial photosynthetic solar-to-chemical conversion.
引用
收藏
页数:9
相关论文
共 62 条
[1]   The Role of Hole Localization in Sacrificial Hydrogen Production by Semiconductor-Metal Heterostructured Nanocrystals [J].
Acharya, Krishna P. ;
Khnayzer, Rony S. ;
O'Connor, Timothy ;
Diederich, Geoffrey ;
Kirsanova, Maria ;
Klinkova, Anna ;
Roth, Daniel ;
Kinder, Erich ;
Imboden, Martene ;
Zamkov, Mikhail .
NANO LETTERS, 2011, 11 (07) :2919-2926
[2]   Design of a CdS/CdSe Heterostructure for Efficient H2 Generation and Photovoltaic Applications [J].
Bera, Rajesh ;
Dutta, Avisek ;
Kundu, Simanta ;
Polshettiwar, Vivek ;
Patra, Amitava .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (23) :12158-12167
[3]   Dimension-Matched Zinc Phthalocyanine/BiVO4 Ultrathin Nanocomposites for CO2 Reduction as Efficient Wide-Visible-Light-Driven Photocatalysts via a Cascade Charge Transfer [J].
Bian, Ji ;
Feng, Jiannan ;
Zhang, Ziqing ;
Li, Zhijun ;
Zhang, Yuhang ;
Liu, Yadi ;
Ali, Sharafat ;
Qu, Yang ;
Bai, Linlu ;
Xie, Jijia ;
Tang, Dongyan ;
Li, Xin ;
Bai, Fuquan ;
Tang, Junwang ;
Jing, Liqiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (32) :10873-10878
[4]   In Situ Grown Monolayer N-Doped Graphene on CdS Hollow Spheres with Seamless Contact for Photocatalytic CO2 Reduction [J].
Bie, Chuanbiao ;
Zhu, Bicheng ;
Xu, Feiyan ;
Zhang, Liuyang ;
Yu, Jiaguo .
ADVANCED MATERIALS, 2019, 31 (42)
[5]   Spontaneous Formation of Noble- and Heavy-Metal-Free Alloyed Semiconductor Quantum Rods for Efficient Photocatalysis [J].
Chen, Dechao ;
Zhang, Huayang ;
Li, Yunguo ;
Pang, Yingping ;
Yin, Zongyou ;
Sun, Hongqi ;
Zhang, Lai-Chang ;
Wang, Shaobin ;
Saunders, Martin ;
Barker, Emily ;
Jia, Guohua .
ADVANCED MATERIALS, 2018, 30 (39)
[6]   Macroscopic Spontaneous Polarization and Surface Oxygen Vacancies Collaboratively Boosting CO2 Photoreduction on BiOIO3 Single Crystals [J].
Chen, Fang ;
Ma, Zhaoyu ;
Ye, Liqun ;
Ma, Tianyi ;
Zhang, Tierui ;
Zhang, Yihe ;
Huang, Hongwei .
ADVANCED MATERIALS, 2020, 32 (11)
[7]   Rare-Earth Single-Atom La-N Charge-Transfer Bridge on Carbon Nitride for Highly Efficient and Selective Photocatalytic CO2 Reduction [J].
Chen, Peng ;
Lei, Ben ;
Dong, Xing'an ;
Wang, Hong ;
Sheng, Jianping ;
Cui, Wen ;
Li, Jieyuan ;
Sun, Yanjuan ;
Wang, Zhiming ;
Dong, Fan .
ACS NANO, 2020, 14 (11) :15841-15852
[8]   Quantitative operando visualization of the energy band depth profile in solar cells [J].
Chen, Qi ;
Mao, Lin ;
Li, Yaowen ;
Kong, Tao ;
Wu, Na ;
Ma, Changqi ;
Bai, Sai ;
Jin, Yizheng ;
Wu, Dan ;
Lu, Wei ;
Wang, Bing ;
Chen, Liwei .
NATURE COMMUNICATIONS, 2015, 6
[9]   Charge separation via asymmetric illumination in photocatalytic Cu2O particles [J].
Chen, Ruotian ;
Pang, Shan ;
An, Hongyu ;
Zhu, Jian ;
Ye, Sheng ;
Gao, Yuying ;
Fan, Fengtao ;
Li, Can .
NATURE ENERGY, 2018, 3 (08) :655-663
[10]   Balancing electron transfer rate and driving force for efficient photocatalytic hydrogen production in CdSe/CdS nanorod-[NiFe] hydrogenase assemblies [J].
Chica, Bryant ;
Wu, Chang-Hao ;
Liu, Yuhgene ;
Adams, Michael W. W. ;
Lian, Tianquan ;
Dyer, R. Brian .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (10) :2245-2255