Jump and variational inequalities for hypersingular integrals with rough kernels

被引:2
作者
Chen, Yanping [1 ]
Gong, Zhenbing [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
关键词
Jump and variational inequalities; Hypersingular integrals; Rough kernel; WEIGHTED VARIATION INEQUALITIES; MAXIMAL SINGULAR-INTEGRALS; L-P BOUNDS; DIFFERENTIAL-OPERATORS; RIESZ TRANSFORM; BOUNDEDNESS; OSCILLATION;
D O I
10.1016/j.jmaa.2022.126120
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the jump function and variation of hypersingular integral operators with rough kernels T-Omega,T- (alpha,epsilon)f(x) = integral(vertical bar y vertical bar>epsilon) Omega(y)/vertical bar y vertical bar(n+alpha) f(x - y) dy, where alpha >= 0, Omega is an integrable function on the unit sphere Sn-1 satisfying certain cancellation conditions. More precisely, we first show that for 1 < p < infinity, the jump function and variation of the family of truncated hypersingular integrals {T-Omega,T- (alpha,epsilon)}(epsilon>0) extends to a bounded operator from the Sobolev space L-alpha(p) to the Lebesgue space L-p with Omega belonging to the Hardy space H-q(Sn-1) where q = n-1/n-1+alpha, which gives a positive answer to an open problem proposed by Ding-Hong-Liu [15]. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 32 条
  • [1] ANDERSEN KF, 1980, STUD MATH, V69, P19
  • [2] BOURGAIN J, 1989, PUBL MATH-PARIS, P5
  • [3] ON SINGULAR INTEGRALS
    CALDERON, AP
    ZYGMUND, A
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1956, 78 (02) : 289 - 309
  • [4] Campbell JT, 2000, DUKE MATH J, V105, P59
  • [5] Oscillation and variation for singular integrals in higher dimensions
    Campbell, JT
    Jones, RL
    Reinhold, K
    Wierdl, M
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (05) : 2115 - 2137
  • [6] A rough hypersingular integral operator with an oscillating factor
    Chen, Daning
    Fan, Dashan
    Le, Hung Viet
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) : 873 - 885
  • [7] Certain operators with rough singular kernels
    Chen, JC
    Fan, DS
    Ying, YM
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2003, 55 (03): : 504 - 532
  • [8] Boundedness of rough singular integral operators on the Triebel-Lizorkin spaces
    Chen, Jiecheng
    Zhang, Chunjie
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (02) : 1048 - 1052
  • [9] Boundedness of a class of super singular integral operators and the associated commutators
    Chen, QL
    Zhang, ZF
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (06): : 842 - 853
  • [10] Chen YP, 2015, T AM MATH SOC, V367, P1585