Universal non-Gaussian velocity distribution in violent gravitational processes

被引:23
|
作者
Iguchi, O
Sota, Y
Tatekawa, T
Nakamichi, A
Morikawa, M
机构
[1] Ochanomizu Univ, Dept Phys, Bunkyo Ku, Tokyo 1128610, Japan
[2] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan
[3] Waseda Univ, Dept Phys, Shinjuku Ku, Tokyo 1698555, Japan
[4] Gunma Astron Observ, Gunma 3770702, Japan
关键词
D O I
10.1103/PhysRevE.71.016102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the velocity distribution in spherical collapses and cluster-pair collisions by use of N-body simulations. Reflecting the violent gravitational processes, the velocity distribution of the resultant quasistationary state generally becomes non-Gaussian. Through the strong mixing of the violent process, there appears a universal non-Gaussian velocity distribution, which is a democratic (equal-weighted) superposition of many Gaussian distributions (DT distribution). This is deeply related with the local virial equilibrium and the linear mass-temperature relation which characterize the system. We show the robustness of this distribution function against various initial conditions which leads to the violent gravitational process. The DT distribution has a positive correlation with the energy fluctuation of the system. On the other hand, the coherent motion such as the radial motion in the spherical collapse and the rotation with the angular momentum suppress the appearance of the DT distribution.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] The non-Gaussian distribution of galaxy gravitational fields
    Vladimir Stephanovich
    W?odzimierz God?owski
    Research in Astronomy and Astrophysics, 2017, 17 (12) : 3 - 16
  • [2] The non-Gaussian distribution of galaxy gravitational fields
    Stephanovich, Vladimir
    Godlowski, Wlodzimierz
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2017, 17 (12)
  • [3] Non-Gaussian velocity distribution function in a vibrating granular bed
    Kawarada, A
    Hayakawa, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2004, 73 (08) : 2037 - 2040
  • [4] GAUSSIAN AND NON-GAUSSIAN DISTRIBUTION-VALUED ORNSTEIN-UHLENBECK PROCESSES
    BOJDECKI, T
    GOROSTIZA, LG
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1991, 43 (06): : 1136 - 1149
  • [5] Universal First-Passage-Time Distribution of Non-Gaussian Currents
    Singh, Shilpi
    Menczel, Paul
    Golubev, Dmitry S.
    Khaymovich, Ivan M.
    Peltonen, Joonas T.
    Flindt, Christian
    Saito, Keiji
    Roldan, Edgar
    Pekola, Jukka P.
    PHYSICAL REVIEW LETTERS, 2019, 122 (23)
  • [6] On the fatigue analysis of non-Gaussian stress processes with asymmetric distribution
    Wang, XY
    Sun, JQ
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2005, 127 (06): : 556 - 565
  • [7] Transition from Gaussian to non-Gaussian velocity distribution functions in a vibrated granular bed
    Murayama, Y
    Sano, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (06) : 1826 - 1829
  • [8] Gaussian and non-Gaussian Behaviour of Diffusion Processes
    Robinson, Derek W.
    OPERATOR SEMIGROUPS MEET COMPLEX ANALYSIS, HARMONIC ANALYSIS AND MATHEMATICAL PHYSICS, 2015, 250 : 463 - 481
  • [9] NON-GAUSSIAN VELOCITY CORRELATIONS IN FLUIDS
    BALUCANI, U
    TOGNETTI, V
    VALLAURI, R
    GRIGOLINI, P
    MARIN, P
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1982, 49 (03): : 181 - 190
  • [10] Origin of Non-Gaussian Velocity Distribution Found in Freestanding Graphene Membranes
    Kai, Yue
    Xu, Wenlong
    Zheng, Bailin
    Yang, Nan
    Zhang, Kai
    Thibado, P. M.
    COMPLEXITY, 2019,