Initial investigations into using an ensemble of deep neural networks for building facade image semantic segmentation

被引:4
|
作者
Dai, Menglin [1 ]
Meyers, Gregory [1 ]
Tingley, Danielle Densley [1 ]
Mayfield, Martin [1 ]
机构
[1] Univ Sheffield, Dept Civil & Struct Engn, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
deep learning; image segmentation; building retrofit; environmental modelling; U-Net; ARCHITECTURE;
D O I
10.1117/12.2532828
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Due to now outdated construction technology, houses which have not been retrofitted since construction typically fail to meet modern energy performance levels. However, identifying at a city scale which houses could benefit the most from retrofit solutions is currently a labour intensive process. In this paper, a system that uses a vehicle mounted camera to capture pictures of residential buildings and then performs semantic segmentation to differentiate components of captured buildings is presented. An ensemble of U-Net semantic segmentation models are trained to identify walls, roofs, chimneys, windows and doors from building facade images and differentiate between window and door instances which are partially visible or obscured. Results show that the ensemble of U-Net models achieved high accuracy in identifying walls, roofs and chimneys, moderate accuracy in identifying windows and low accuracy in identifying doors and instances of windows and doors which were partially visible or obscured. When U-Net models were retrained to identify doors or windows, irrespective of partially visible and obscured instances, a significant rise in door and window identification accuracy was observed. It is believed that a larger training dataset would produce significantly improved results across all classes. The results presented here prove the operational feasibility in the first part of a process to combine this model with high-resolution thermography and GPS for automating building retrofitting evaluations.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Sea Ice Image Semantic Segmentation Using Deep Neural Networks
    Dowden, Benjamin
    De Silva, Oscar
    Huang, Weimin
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [2] Semantic segmentation using Firefly Algorithm-based evolving ensemble deep neural networks
    Zhang, Li
    Slade, Sam
    Lim, Chee Peng
    Asadi, Houshyar
    Nahavandi, Saeid
    Huang, Haoqian
    Hang, Ruan
    KNOWLEDGE-BASED SYSTEMS, 2023, 277
  • [3] A review of semantic segmentation using deep neural networks
    Guo, Yanming
    Liu, Yu
    Georgiou, Theodoros
    Lew, Michael S.
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2018, 7 (02) : 87 - 93
  • [4] A review of semantic segmentation using deep neural networks
    Yanming Guo
    Yu Liu
    Theodoros Georgiou
    Michael S. Lew
    International Journal of Multimedia Information Retrieval, 2018, 7 : 87 - 93
  • [5] Semantic Image Segmentation with Deep Convolutional Neural Networks and Quick Shift
    Zhang, Sanxing
    Ma, Zhenhuan
    Zhang, Gang
    Lei, Tao
    Zhang, Rui
    Cui, Yi
    SYMMETRY-BASEL, 2020, 12 (03):
  • [6] Ensemble Lung Segmentation System Using Deep Neural Networks
    Ali, Redha
    Hardie, Russell C.
    Ragb, Hussin K.
    2020 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR): TRUSTED COMPUTING, PRIVACY, AND SECURING MULTIMEDIA, 2020,
  • [7] Semantic image segmentation for sea ice parameters recognition using deep convolutional neural networks
    Zhang, Chengqian
    Chen, Xiaodong
    Ji, Shunying
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 112
  • [8] Medical Image Segmentation Using Deep Neural Networks
    Aydin, Musa
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [9] Ordinal Image Segmentation using Deep Neural Networks
    Fernandes, Kelwin
    Cardoso, Jaime S.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [10] Semantic segmentation of human oocyte images using deep neural networks
    Anna Targosz
    Piotr Przystałka
    Ryszard Wiaderkiewicz
    Grzegorz Mrugacz
    BioMedical Engineering OnLine, 20